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Предисловие

Предлагаемое вниманию читателей учебно-методиче-
ское пособие представляет собой вторую часть конспек-
та лекций, посвящённых различным вопросам курса «Ка-
либровочные поля», изучаемого магистрантами Института
физики Казанского федерального университета.

Первая часть, вышедшая под названием «Введение в
теорию классических полей», содержит изложение основ-
ных идей и понятий теории калибровочных полей, а так-
же построение калибровочно инвариантного лагранжиана
поля Янга–Миллса и получение с помощью вариационной
процедуры уравнений Янга–Миллса.

Настоящее пособие призвано восполнить некоторый
недостаток, присутствующий в настоящее время в учеб-
ной литературе, посвящённой классическим калибровоч-
ным полям. Так во всех известных автору учебниках, для
того чтобы получить какое-либо точное решение уравне-
ний Янга–Миллса (или Янга–Миллса–Хиггса), просто по-
стулируется некий анзац1, появление которого в достаточ-
ной степени не объясняется.

В связи с этим, в данном пособии мы уделяем боль-
шое внимание понятию производной Ли калибровочного
поля и связанными с ним симметриями. В качестве приме-
ра использования этого подхода, нами получены решения
уравнения самодуальности, симметричные относительно
преобразований из групп SO(3) и SO(4) — монопольное
решение Богомольного–Прасада–Соммерфильда и инстан-

1От нем. Ansatz — подход, основание, начало, исходная идея. Этим
словом называют частный вид искомой величины (например, компо-
ненты какого-либо поля), содержащий небольшое количество неиз-
вестных функций, точный вид которых определяется при решении
полевых уравнений.



тонное решение Белавина–Полякова–Шварца–Тюпкина.
При изложении материала лекций автором предпола-

галось, что читатель знаком с основами математическо-
го анализа, линейной алгебры, тензорного анализа, тео-
рии дифференциальных уравнений, вариационного исчис-
ления и квантовой механики, а также с материалом, изло-
женным с первой части данного конспекта.

Обозначения и основные формулы

Цель этого раздела — ввести условные обозначения и
дать сводку необходимых в дальнейшем формул.

На протяжении всех лекций мы будем иметь дело с
плоским 4-мерным пространством-временем с координата-
ми x1, x2, x3, x4, при этом последняя координата считается
временно́й. Метрика такого пространства в общем виде за-
даётся с помощью тензора gik

ds2 = gik dxidxk .

В зависимости от рассматриваемой модели эта метрика бу-
дет отождествляться либо с метрикой Минковского

ds2
M = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 ,

либо с евклидовой метрикой

ds2
E = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 .

Используемый нами полностью антисимметричный по-
стоянный тензор εα1α2...αn в n-мерном пространстве опреде-



6 ОБОЗНАЧЕНИЯ И ОСНОВНЫЕ ФОРМУЛЫ

ляется как

εα1α2...αn =


+1, если α1, α2, . . . , αn

есть чётная перестановка 1, 2, . . . , n;
−1, если α1, α2, . . . , αn

есть нечётная перестановка 1, 2, . . . , n;
0 в остальных случаях.

Как следствие этого определения, ε12 = ε123 = ε1234 = 1.
Для тензора εα1α2...αn справедливо следующее тождество:

εα1α2...αnεβ1β2...βn = (−1)S

∣∣∣∣∣∣∣∣∣
δβ1

α1
δβ2

α1
. . . δβn

α1

δβ1
α2

δβ2
α2

. . . δβn
α2

. . .
δβ1

αn δβ2
αn . . . δβn

αn

∣∣∣∣∣∣∣∣∣ ,

где число S — количество знаков минус в сигнатуре мет-
рики рассматриваемого пространства.

Также в данном пособии нами используются приведён-
ные ниже обозначения:

1. Запись f (x) означает, что функция f зависит от всех
координат пространства, т. е. f (x) ≡ f (x1, x2, x3, x4);

2. Для производной по координате xm применяется сим-
вол ∂m. В остальных случаях используются конструк-
ции вида ∂f

∂ξ или df
dr ;

3. Напротив, штрих « ′» всюду в тексте обозначает ве-
личину, полученную из исходной в результате неко-
торого калибровочного преобразования;

4. Для обозначения различных групп Ли применяются
заглавные латинские буквы, в то время как для соот-
ветствующих им алгебр Ли — строчные готические:
например, G и g, SU (N) и su(N) и т. д.;
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5. Использование индексов в формулах настоящего по-
собия подчинено следующему правилу: латинские
буквы из середины алфавита ( i, k, m и т. д.) — для ин-
дексов, принимающих значения от 1 до 4, латинские
буквы из начала алфавита (a, b, c и т. д.) — для ин-
дексов, пробегающих от 1 до 3. Кроме того, нами при-
меняются строчные латинские буквы, записанные в
скобках ( (a), (b), (c) и т. д.), для обозначения группо-
вых индексов и строчные греческие — для всех про-
чих случаев;

6. Различные матрицы, встречающиеся в тексте насто-
ящего конспекта мы будем выделять, как правило,
полужирным шрифтом. Для эрмитово сопряжённой
и обратной матрицы к матрице A используются обо-
значения A† и A−1 соответственно. Матрица A явля-
ется эрмитовой, если A† = A, антиэрмитовой, если
A† = −A, и унитарной, если A†A = I. Символом In мы
будем обозначать единичную матрицу размера n × n,
если же уточнения её размера не требуется, или он
ясен из контекста, то индекс n опускается. Комму-
татор любых двух матриц A и B (а также любых
двух операторов) определяется следующим стандарт-
ным соотношением: [A,B] = AB−BA.



Лекция 1

а. Производная Ли

Пусть задан некоторый объект T . Рассмотрим две близ-
кие точки P(x1, . . . , xn) и P̃(y1, . . . , yn) на многообразии Mn и
значения объектов T (x) и T (y) в этих точках. Наша задача
— выяснить насколько сильно меняется объект T при пе-
реходе от точки P к точке P̃. Однако T (y) и T (x) как они
есть, строго говоря, несравнимы, поскольку принадлежат
различным множествам (например, если T — векторное
поле, то различным касательным пространствам). Чтобы
осуществить сравнение, нужно «переместить» T (y) обрат-
но в точку P некоторым естественным способом, получив
величину T̃ (x), а затем проводить сравнение. Для тензор-
ных полей указанный выше способ — это преобразование
координат, подобранное так, чтобы точка P̃ перешла в точ-
ку P.

Пусть ξ — векторное поле, задающее направление пере-
хода из точки P в точку P̃

yµ = xµ + ξµε + o(ε), µ = 1, . . . ,n , (1.1)

где ε — малый параметр. Соответствующее обратное пре-
образование имеет вид

xµ = yµ − ξµε + o(ε). (1.2)

Производная Ли вдоль векторного поля ξ от объекта T ,
определяемая как

£ξT = lim
ε→0

T̃ (x, ε)−T
ε

=
dT̃ (x, ε)

dε ε=0
, (1.3)
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задаёт скорость деформации T в направлении данного по-
ля.

Если взять в качестве T тензорное поле типа (p, q), то
для тензора T̃ , являющегося результатом переноса тензо-
ра T из точки P̃ обратно в точку P, получаем следующее
выражение

T̃ µ1...µp
ν1...νq

(x, ε) = T
ρ1...ρp

σ1...σq (y) · ∂yσ1

∂xν1
. . .

∂yσq

∂xνq

∂xµ1

∂yρ1
. . .

∂xµp

∂yρp
=

= T
ρ1...ρp

σ1...σq (y)
(

δσ1
ν1

+ ∂ν1ξσ1·ε + o(ε)
)

. . .
(

δµ1
ρ1
− ∂ρ1

ξµ1·ε + o(ε)
)

. . . =

= T
µ1...µp

ν1...νq (x) + ε
(

ξκ ∂κT
µ1...µp

ν1...νq + T
µ1...µp

σ1ν2...νq ∂ν1ξσ1 + . . .−

−T
ρ1µ2...µp

ν1...νq ∂ρ1
ξµ1 − . . .

)
+ o(ε), (1.4)

где учтено, что

T
µ1...µp

ν1...νq (y) = T
µ1...µp

ν1...νq (x) + ε ξκ ∂κT
µ1...µp

ν1...νq + o(ε).

Воспользовавшись определением (1.3), получаем, что про-
изводная Ли тензорного поля T равна

£ξT
µ1...µp

ν1...νq = ξκ ∂κT
µ1...µp

ν1...νq + T
µ1...µp

σ1ν2...νq ∂ν1ξσ1 + . . .−T
ρ1µ2...µp

ν1...νq ∂ρ1
ξµ1 − . . . .

(1.5)
По построению производная Ли от тензора также является
тензором, причём одной и той же с исходным тензором
валентности.

В дальнейшем нам будут полезны частные случаи фор-
мулы (1.5) для производных Ли скаляра, тензоров первой
и второй валентности:

£ξT = ξµ ∂µT , (1.6)

£ξT ν = ξµ ∂µT ν −T µ ∂µξν, (1.7)

£ξTν = ξµ ∂µTν + Tµ ∂νξµ, (1.8)

£ξTνσ = ξµ ∂µTνσ + Tµσ ∂νξµ + Tµν ∂σξµ. (1.9)
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б. Симметрии тензорных полей

Пусть на рассматриваемом нами многообразии Mn дей-
ствует группа автоморфизмов H : Mn → Mn. Рассмотрим
некоторую точку P(x1, . . . , xn) и пусть под действием пре-
образования a ∈ H она переходит в точку P̃(y1, . . . , yn). Бу-
дем считать, что данное преобразование мало отличается
от тождественного. Тогда

yµ = a(x)µ = xµ + ε ξµ + o(ε). (1.10)

Это выражение можно переписать в более удобных обо-
значениях, используя операторы, действующие на столбец
из координат точки P

y = a(x) = x + ε ξ + o(ε) =
(
I + ε ξ̂ + . . .

)
x, ξ̂ ≡ ξκ ∂κ. (1.11)

Оператор ξ̂ является элементом соответствующей группе
H алгебры Ли h с коммутатором, который вычисляется по
правилу (индексы s и r здесь позволяют отличать различ-
ные элементы алгебры Ли h )

ξ̂
s
, ξ̂

r
= ξ̂

s
ξ̂
r
− ξ̂

r
ξ̂
s

= ξ
[sr]

κ ∂κ , ξ
[sr]

κ ≡ ξ
s

µ ∂µ ξ
r

κ − ξ
r

µ ∂µ ξ
s

κ. (1.12)

Будем называть тензорное поле T симметричным от-
носительно группы преобразований H , если производная
Ли вдоль любого векторного поля ξ, такого, что ξ̂ ∈ h, рав-
на нулю

£ξT
µ1...µp

ν1...νq = 0. (1.13)

Если T представляет собой метрический тензор, то вектор-
ные поля ξ, удовлетворяющие (1.13), называются полями
Киллинга.
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в. Производная Ли калибровочного поля

Рассмотрим теперь вопрос о симметриях калибровоч-
ных полей. Если попытаться перенести на поле Ai опре-
деление, данное в предыдущем разделе, мы тут же столк-
нёмся с трудностями — условие £ξAk = 0 не обладает ка-
либровочной инвариантностью. Это значит, что в одной ка-
либровке потенциалы Ai обладают заданной симметрией,
в то время как в другой калибровке симметрии нет.

Альтернативный вариант, в котором мы берём усло-
вие £ξFkm = 0, является удовлетворительным только для
электродинамики (так как тензор Максвелла не зависит от
выбора калибровки). В случае неабелевой калибровочной
группы это условие опять не является инвариантным.

Всё сказанное выше связано с тем, что в определении
производной Ли, приведённом ранее, нами не учитыва-
лось, что при переносе исследуемого объекта из точки P̃
в точку P он может меняться под действием калибровоч-
ных преобразований.

Для того чтобы учесть это, рассмотрим инфинитези-
мальное калибровочное преобразование U(ε) = I−εW+o(ε),
где ε — малый параметр, W — элемент алгебры Ли g. Опре-
делим, по аналогии с производной Ли тензорного поля,
производную Ли вдоль однопараметрического семейства
калибровочных преобразований U(ε) как

£WAk ≡ lim
ε→0

A′
k(ε)−Ak

ε
=

dA′
k(ε)

dε ε = 0
, (1.14)

где
A′

k(ε) = U(ε)−1AkU(ε) + U(ε)−1∂kU(ε).

Подставляя выражение для U(ε) в эту формулу, получаем,
что

A′
k(ε) = ( I + εW + . . .)

[
Ak( I− εW + . . .) + ∂k(I− εW + . . .)

]
=
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= Ak + ε (WAk −AkW)− ε ∂kW + . . . ,

откуда
£WAk = [W,Ak]− ∂kW = −D̂ kW . (1.15)

Теперь мы имеем два типа производных Ли, и будет
естественно объединить их для нахождения производной
от потенциала калибровочного поля

£ξ,WAk ≡ £ξAk + £WAk = £ξAk − D̂ kW . (1.16)

Будем называть калибровочное поле Ak симметрич-
ным относительно группы преобразований H , если про-
изводная Ли вдоль любого векторного поля ξ, такого, что
ξ̂ ∈ h , удовлетворяет условию

£ξ,WAk = 0 ⇔ £ξAk = D̂ kW. (1.17)

Полученное выражение, фактически, означает, что дефор-
мация потенциала Ak как ковектора вдоль векторного поля
ξ может быть компенсирована соответствующим образом
подобранным калибровочным преобразованием вида U(ε) =
= I− εW + o(ε).

Проводя те же самые рассуждения для тензора Fkm, мы
получаем, что

£WFkm ≡
dF′

km(ε)
dε ε = 0

=
d

(
U(ε)−1FkmU(ε)

)
dε ε = 0

= [W,Fkm],

и, следовательно, условие симметричности тензора напря-
жённости будет иметь вид

£ξFkm = [Fkm,W] . (1.18)

Как легко показать, задавая калибровочное преобразова-
ние величины W

W
U−→W′ = U−1WU + U−1ξk∂kU, (1.19)
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оба условия (1.17) и (1.18) будут калибровочно инвариант-
ными.

Если мы имеем несколько векторных полей ξ
s
, то каж-

дому из них будет соответствовать своя матрица Ws ∈ g.
Получившееся соответствие между векторными полями ξ
(и связанными с ними операторами ξ̂ ) и величинами W
представляет собой линейное отображение W : h → g меж-
ду алгебрами Ли:

W
(

ξ̂
s
+ ξ̂

r

)
= W ξ̂

s
+W ξ̂

r
= Ws + Wr,

W
(

λ ξ̂
s

)
= λW ξ̂

s
= λ Ws, λ = const.

Кроме того, если набор операторов

{
ξ̂
s

}
образуют базис в

алгебре Ли h , тогда

W
(

ξ̂
s
, ξ̂

r

)
= Cp

srWp,

где Cp
sr — соответствующие структурные постоянные. При

этом, отображение W не обязательно является гомомор-
физмом алгебр Ли, то есть

W
(

ξ̂
s
, ξ̂

r

)
=/ [Ws,Wr].

г. Интегрируемость условий симметрии

Необходимо отметить, что величины W в формулах
(1.17), (1.18) остаются, вообще говоря, произвольными.
Они могут быть определены только из условий интегри-
руемости этих уравнений.
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Производные Ли, стоящие в левых частях равенств
(1.17) и (1.18), должны удовлетворять коммутационному
соотношению [

£ξ
s
, £ξ

r

]
≡ £ξ

s
£ξ

r
−£ξ

r
£ξ

s
= £ξ

[sr]
. (1.20)

Используя это, получаем условия совместности уравнений
(1.17) и (1.18). Для уравнения на потенциалы калибровоч-
ного поля оно имеет вид

D̂ k

(
£ξ

s
Wr −£ξ

r
Ws + [Ws,Wr ]−W[sr]

)
= 0, (1.21)

для уравнения на напряжённости —[
£ξ

s
Wr −£ξ

r
Ws + [Ws,Wr ]−W[sr],Fkm

]
= 0 . (1.22)

Здесь W[sr] — матрица, соответствующая вектору ξ
[sr]

i.

Если требовать выполнения обоих полученных условий
для всех, в том числе непараллельных, калибровочных по-
лей, то мы приходим к следующему уравнению

£ξ
s
Wr −£ξ

r
Ws + [Ws,Wr ]−W[sr] = 0 . (1.23)

Из соотношения (1.23) при заданных векторах ξ
s

i мож-

но определить величины Ws, а затем уже из (1.17), (1.18)
найти компоненты калибровочного поля.

В этой связи особый интерес для нас будут представ-
лять решения уравнения (1.23), не зависящие от коорди-
нат. В этом случае все выражения, содержащие производ-
ные, обращаются в нуль, и исследуемое уравнение прини-
мает вид

W[sr] = [Ws,Wr ] . (1.24)
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Так как матрица W[sr] является образом коммутатора опе-
раторов ξ̂

s
и ξ̂

r
, полученное соотношение означает, что вве-

дённое нами отображение W : h → g является гомомор-
физмом алгебр Ли.

Очевидно, что требование независимости величин Wr

от координат вовсе не является обязательным. Однако
можно доказать, что в случаях, которые будут рассматри-
ваться нами в следующих лекциях — h = so(4) и h = so(3),
все решения (1.23) с помощью калибровочных преобразо-
ваний можно свести к указанной ситуации. Доказатель-
ство этого утверждения достаточно трудоёмкое и нами
приводиться не будет.



Лекция 2

а. Определение самодуального калибровочного поля

Уравнения Янга-Миллса существенно отличаются от
уравнений Максвелла в электродинамике. Прежде всего,
они нелинейны, то есть описывают взаимодействия раз-
личных компонент поля между собой. Кроме того, уравне-
ния Янга-Миллса содержат наряду с тензором напряжён-
ности также и потенциалы Am, которые зависят от выбора
определённой калибровки.

В простейшем случае, когда потенциалы калибровочно-
го поля параллельны, уравнения становятся линейными и
сводятся к уравнениям, напоминающим уравнения Макс-
велла.

Если же не ограничивать себя требованием параллель-
ности, то даже для уравнений Янга-Миллса без источ-
ников нахождение точных решений становится сложной
и серьёзной задачей. Для того, чтобы решать подобные
уравнения обычно делают какие-либо изначальные пред-
положения о симметрии искомого поля, например сфери-
ческой, цилиндрической и т.п.

Однако помимо этого, общего, подхода, в теории Янга-
Миллса существует приём, который позволяет от соб-
ственно уравнений Янга-Миллса (уравнений второго по-
рядка) перейти к более простым по структуре уравнени-
ям первого порядка. Если предположить, что тензор на-
пряжённости калибровочного поля пропорционален свое-
му дуальному тензору

Fmn = C
∗
Fmn, C − константа, (2.1)

то, принимая во внимание тождество Бьянки, получаем,
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что в указанном случае уравнения Янга-Миллса без ис-
точников удовлетворяются тождественно

D̂ mFmn = C D̂ m

∗
Fmn ≡ 0 .

К сожалению, у условия (2.1) есть существенный недо-
статок — оно даёт существенные ограничения на сигна-
туру рассматриваемого пространства. Чтобы это увидеть,
умножим обе части этого равенства на 1

2 εpqmn и свернём по
индексам m и n:

1
2

εpqmnFmn =
1
2

C εpqmn
∗
Fmn ⇒

∗
Fpq =

1
4

C εpqmnεmnikF
ik ⇒

⇒
∗
Fpq =

1
2

C (−1)S
(

δp
i δq

k − δp
kδq

i

)
Fik ⇒

∗
Fpq = (−1)S C Fpq,

где S — количество знаков минус в сигнатуре метрики про-
странства. Отсюда получается, что для нетривиальности
условия (2.1) необходимо, чтобы

C2 = (−1)S ⇒
{

C = ±1,
S − чётное.

(2.2)

В пространстве-времени Минковского (S = 1) указанный
подход ничего, за исключением тривиального случая Fmn =
= 0, не даёт, в то время как для решения уравнений Янга-
Миллса на фоне евклидова пространства (S = 0) он пре-
вращается в мощный инструмент.

В дальнейшем будем говорить, что калибровочное поле
является самодуальным, если оно удовлетворяет уравне-
нию

∗
Fmn = Fmn , (2.3)

и антисамодуальным, если оно удовлетворяет уравнению

∗
Fmn = −Fmn . (2.4)
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Несмотря на то, что эти уравнения значительно проще
уравнения Янга-Миллса, они также являются нелинейны-
ми и для получения их точных решений придётся привле-
кать различные дополнительные соображения.

В следующих разделах мы рассмотрим наиболее из-
вестные точные решения уравнений (2.3) и (2.4) — инстан-
тоны и самодуальные монополи.

б. Инстантоны в квантовой механике

В квантовой механике есть два мощных метода при-
ближенных расчетов: метод теории возмущений и квази-
классическое приближение. В квантовой теории поля ме-
тод теории возмущений играет большую роль, являясь в
квантовой электродинамике основным рабочим методом,
позволяющим производить расчеты с огромной точностью.
В теории сильных взаимодействий, квантовой хромоди-
намике, теория возмущений справедлива лишь в обла-
сти асимптотической свободы, то есть при больших пере-
данных импульсах. При малых переданных импульсах, то
есть на больших расстояниях, взаимодействие становится
сильным и необходимо применять другие методы. Одним
из них является метод инстантонов, являющийся обобще-
нием квазиклассического метода квантовой механики на
квантовую теорию поля.

Хорошо известно, что квантово-механическое проник-
новение через потенциальный барьер описывается ампли-
тудой, которая в квазиклассическом приближении про-
порциональна

exp

−1
~

b∫
a

|p| dx

 , (2.5)

где a и b — границы барьера, |p| =
√

2m (V − E) — модуль
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импульса частицы под барьером V = V (x), а E — её энергия.
Сам импульс — мнимая величина, так как V > E:

p = i
√

2m (V − E), (2.6)

а это значит, что прохождение под барьером можно рас-
сматривать как классическое движение в мнимом времени
t → it.

В квантовой механике можно рассматривать прохожде-
ние барьера из основного состояния («вакуума») в другое
основное состояние (другой «вакуум») для двойной ямы.
Ему соответствует классическое движение в мнимом вре-
мени с E = 0 между двумя ямами за бесконечный проме-
жуток времени от t = −∞ до t = +∞ , но с конечным дей-
ствием. Такое решение в механике называется инстанто-
ном.

Аналогично описанной выше ситуации, можно опреде-
лить инстантоны в теории поля как решения в евклидовом
пространстве (с мнимым временем), описывающие «тунне-
лирование» между вакуумными состояниями (Fmn = 0).

в. Теорема Гаусса

Центральную роль в понимании топологии калибровоч-
ных полей для нас будет играть теорема Гаусса (о дивер-
генции) для интегралов в n-мерном пространстве.

Пусть Mn — область n-мерного пространства и ∂Mn —
(n − 1)-мерное подмножество, которое является границей
Mn. Положение точек на поверхности ∂Mn может быть за-
дано при помощи n− 1 параметра ζα, α = 1, . . . ,n− 1. Урав-
нение, описывающее поверхность ∂Mn, в этом случае будет
иметь вид

xµ = xµ(ζ1, ζ2, . . . , ζn−1), µ = 1, . . . ,n.
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Тогда, согласно теореме Гаусса, интеграл от диверген-
ции вектора J µ по области Mn можно заменить интегралом
по поверхности ∂Mn:∫

Mn

∂µJ µ dnx =
∫

∂Mn

J µ dn−1σµ . (2.7)

В приведённой формуле используются следующие обозна-
чения:

dnx ≡ dx1 dx2 . . . dxn , dn−1ζ = dζ1 dζ2 . . . dζn−1 ,

dn−1σµ ≡
1

(n− 1)!
εµν1... νn−1εα1... αn−1

∂xν1

∂ζα1

. . .
∂xνn−1

∂ζαn−1

dn−1ζ .

Кроме того, полезно будет напомнить, что для 3-
мерного и 4-мерного евклидового пространства элементы
объёма d3x и d4x могут быть записаны как

d3x = r2drd2Ω2 , d4x = R3dRd3Ω3 ,

где

r =
√

(x1)2 + (x2)2 + (x3)2, R =
√

(x1)2 + (x2)2 + (x3)2 + (x4)2,

а d2Ω2, d2Ω3 — элементы соответствующих телесных углов,
причём ∫

d2Ω2 = 4π ,
∫

d3Ω3 = 2π2 .

г. Соглашение об использовании индексов

Будем считать, что мы сделали переход к мнимому вре-
мени, то есть метрика пространства положительно опреде-
лена, причём gkm = δkm. Так как в этом случае нет особого
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смысла делать различие между ковариантными и контра-
вариантными компонентами тензоров, мы далее будем ис-
пользовать только нижние пространственные индексы:

xm −→ xm , Fkm −→ Fkm и т. д.

В качестве калибровочной группы мы возьмём, как са-
мую простейшую из нетривиальных, группу SU (2). Для
этой калибровочной группы поднятие и опускание группо-
вых индексов также осуществляется с помощью символа
Кронекера

G(a)(b) = δ (a)(b) ,

в дальнейшем и для них мы не будем различать верхние
и нижние индексы, а суммирование будет предполагаться
по любой паре повторяющихся. Кроме того, так как груп-
повые индексы в данном случае принимают значения от 1
до 3, мы, начиная с этой лекции, для простоты не будем
использовать скобки для их обозначения:

t(a) −→ ta , A(a)
m −→ Aa

m , F (a)
km −→ Fa

km и т. д.

д. Инстантоны в модели Янга-Миллса

Если предполагать, что действие, вычисленное нами
для искомых решений, является конечным, функции Fa

km
должны быть регулярными во всём пространстве и стре-
миться к нулю на бесконечности, то есть, когда R →∞.

Изучение свойств инстантонов начнём с простого нера-
венства:

1
8

∫
d4x

(
Fa

km −
∗
Fa

km

) (
Fa

km −
∗
Fa

km

)
> 0, (2.8)

из которого следует, что

S =
1
4

∫
d4x Fa

kmFa
km >

1
4

∫
d4xFa

km

∗
Fa

km, (2.9)
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так как
∗
Fa

km

∗
Fa

km = Fa
kmFa

km (в евклидовом пространстве). В
неравенствах (2.8) и (2.9) знак равенства достигается толь-

ко для самодуальных калибровочных полей Fa
km =

∗
Fa

km.
Аналогично можно рассмотреть неравенство

1
8

∫
d4x

(
Fa

km +
∗
Fa

km

) (
Fa

km +
∗
Fa

km

)
> 0, (2.10)

из которого следует, что

S =
1
4

∫
d4x Fa

kmFa
km > −1

4

∫
d4xFa

km

∗
Fa

km, (2.11)

причём знак равенства достигается здесь только для ан-

тисамодуальных калибровочных полей Fa
km = −

∗
Fa

km.
Необходимо отметить, что интеграл, стоящий в левых

частях неравенств (2.9) и (2.11) всегда является положи-
тельной величиной (кроме тривиального случая Fa

km ≡ 0),
в то время как знак интеграла в правых частях неопре-
делён. Так как данные неравенства становятся нетриви-
альными, только если их правая часть положительна, они
могут быть объединены в одно неравенство вида

S =
1
4

∫
d4x Fa

kmFa
km >

1
4

∣∣∣∣ ∫
d4x Fa

km

∗
Fa

km

∣∣∣∣ , (2.12)

где знак равенства достигается только для самодуальных
и антисамодуальных полей.

Рассмотрим теперь более подробно интеграл в правой
части (2.12). Можно доказать, что подынтегральное выра-
жение представляет собой 4-дивергенцию некоторого век-
тора:

Fa
km

∗
Fa

km =
1
g 2

∂kJk, (2.13)
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где

Jk = −2 εkmpq Tr

(
AmFpq −

2
3

AmApAq

)
. (2.14)

Перейдём с помощью теоремы Гаусса от интегрирования
по всему 4-пространству к поверхностному интегралу по
сфере S3

∞ бесконечного радиуса:

1
4

∫
d4x Fa

km

∗
Fa

km =
1

4g 2

∫
S3
∞

d3σk Jk. (2.15)

Для дальнейших вычислений является важным, что
функционал действия S конечен, то есть на бесконечности
компоненты тензора напряжённости обращаются в нуль,
и, следовательно, компоненты потенциала имеют вид

Ak = U−1∂kU, (2.16)

где U — произвольная унитарная матрица с определите-
лем, равным единице, так что

U = V4(x) I + 2 taVa(x), VkVk = 1. (2.17)

Из равенств (2.16) и (2.17) следует, что на бесконечности

Jk =
4
3

εkmpq Tr
(
U−1∂mUU−1∂pUU−1∂qU

)
=

=
8
3

εkmpq εnrst Vn ∂mVr ∂pVs ∂qVt . (2.18)

Сфера S3
∞ может быть параметризована тремя параметра-

ми ζα (α = 1, 2, 3). Элемент объёма в таком случае запи-
шется в виде

d3σk =
1
6

εkmpq εαβγ
∂xm

∂ζα
· ∂xp

∂ζβ
· ∂xq

∂ζγ

d3ζ. (2.19)
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Подставляя выражения (2.18) и (2.19) в (2.15), получаем

1
4

∫
d4x Fa

km

∗
Fa

km =
2

3g 2

∫
d3ζ εkmpqεαβγVk

∂Vm

∂ζα
·

∂Vp

∂ζβ
·

∂Vq

∂ζγ

.

Легко проверить, что подынтегральное выражение в пра-
вой части удовлетворяет тождеству[

εkmpqεαβγVk
∂Vm

∂ζα
·

∂Vp

∂ζβ
·

∂Vq

∂ζγ

]2

= 36 det

(
∂Vk

∂ζα
· ∂Vk

∂ζβ

)
, (2.20)

где полученный определитель представляется собой опре-
делитель метрического тензора на единичной сфере, за-
данной равенством VkVk = 1.

Отсюда получаем, что

1
4

∫
d4x F (a)

km

∗
F (a)

km = ± 4
g 2

∫
d3ζ

√
det

(
∂Vk

∂ζα
· ∂Vk

∂ζβ

)
= ±8π2n

g 2
,

(2.21)

где n — целое неотрицательное число, так как, в то время
как точка (ζ1, ζ2, ζ3) пробегает по сфере S3

∞ один раз, век-
тор Vk может пробегать сферу VkVk = 1 n раз, каждый раз
давая вклад в виде 4-мерного телесного угла 2π2.

Таким образом, из (2.12) и (2.21) для функционала дей-
ствия имеет место неравенство:

S >
8π2n
g 2

, n = 0, 1, 2, . . . (2.22)

Знак равенства достигается только для калибровочных по-

лей, удовлетворяющих условию Fkm = ±
∗
Fkm и реализую-

щих, следовательно, абсолютные минимумы действия. Та-
кие поля, по аналогии с квантовой механикой, называются
инстантонами.



Лекция 3

а. Классификация инстантонных решений

Как было показано в предыдущем разделе, инстантон-
ные решения уравнений Янга-Миллса представляют со-
бой (анти)самодуальные калибровочные поля, с тензором
напряжённости, обращающимся в нуль при R →∞, функ-
ционал действия на которых достигает своего минимума.

Различные инстантонные решения удобно различать
между собой, используя понятие топологического заряда

q =
g 2

32π2

∫
d4x Fa

km

∗
Fa

km, (3.1)

который принимает значения из множества целых чисел.
Для нетривиальных самодуальных калибровочных полей
топологический заряд является положительным (q = +n),
для антисамодуальных полей, соответственно, отрица-
тельным (q = −n). В тривиальном случае, когда Fa

km ≡ 0,
заряд, разумеется, равен нулю.

Решение уравнений Янга-Миллса будем называть n-
инстантонным, если оно удовлетворяет условию самоду-
альности (2.3) и имеет топологический заряд, равный n.
Аналогично определяется и n-антиинстантонное решение,
как удовлетворяющее условию антисамодуальности (2.4) и
имеющее топологический заряд q = −n.

Строго говоря, приведённые ранее рассуждения вовсе
не гарантируют существование самих инстантонных ре-
шений. Эта задача может быть решена только путём явно-
го их построения. В дальнейшем, используя свойства сим-
метрии калибровочных полей, мы получим явные выра-
жения 1-инстантонного и 1-антиинстантонного решений.
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б. Тензоры ’т Хофта.

Впервые явное инстантонное решение в евклидовом
пространстве для n = 1 было получено Белавиным, По-
ляковым, Шварцем и Тюпкиным (коротко, БПШТ). Для
определения решения БПШТ удобно ввести так называе-
мые тензоры ’т Хофта ηmn и η̄mn.

Определим следующие матричные векторы:

σk =

{
I, k = 4,

−iτa, k = a = 1, 2, 3,
(3.2)

σ+
k =

{
I, k = 4,

iτa, k = a = 1, 2, 3,
(3.3)

удовлетворяющие тождествам

σkσ
+
m + σmσ+

k = σ+
k σm + σ+

mσk = 2 I · δkm. (3.4)

Тензоры ’т Хофта определяются следующим образом:

ηkm = −1
4

(
σ+

k σm − σ+
mσk

)
, (3.5)

η̄km = −1
4

(
σkσ

+
m − σmσ+

k

)
, (3.6)

или в явном виде (a, b, c = 1, 2, 3)

ηa4 = −η̄a4 = ta, ηab = η̄ab = εabc tc. (3.7)

Непосредственно из данного определения вытекает, во-
первых, что ηkm и η̄km являются элементами алгебры Ли
su(2) и, во-вторых, что построенные величины удовлетво-
ряют, соответственно, условиям самодуальности и антиса-
модуальности

ηkm =
1
2

εkmpqηpq, (3.8)
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η̄km = −1
2

εkmpqη̄pq. (3.9)

Следовательно, если принять, что тензор напряжённости
калибровочного поля пропорционален одной из них, то
уравнение (2.3) (или (2.4)) будет удовлетворено автомати-
чески.

К сожалению, выполнение условия (анти)самодуально-
сти само по себе совершенно не гарантирует существова-
ние подходящего калибровочного потенциала Ak.

Заметим также, что выполнение любого из условий
(2.3) или (2.4) не обязательно влечёт за собой пропорцио-
нальность тензора напряжённости Fkm одному из тензоров
’т Хофта. Тем не менее, требование

Fkm ∼ ηkm или Fkm ∼ η̄km

является простейшим из возможных.
В заключении, приведём список тождеств, которым

удовлетворяют тензоры ’т Хофта ηkm и η̄km, а также со-
ответствующие им коэффициенты разложения по базису
алгебры Ли su(2) (ηkm = ηa

kmta, η̄km = η̄a
kmta):[

ηmn,ηpq

]
= εsnpqηms − εmspqηsn, (3.10)

[ηmq,ηpq] = 2 ηmp, (3.11)[
η̄mn, η̄pq

]
= −εsnpqη̄ms + εmspqη̄sn, (3.12)

[η̄mq, η̄pq] = 2 η̄mp, (3.13)

ηa
kqηa

pq = 3 δkp, (3.14)

ηa
pqηa

pq = η̄a
pqη̄a

pq = 12, (3.15)

ηa
kmηb

km = η̄a
kmη̄b

km = 4 δab, (3.16)

ηa
kmη̄b

km = 0. (3.17)
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в. SO(4)-симметрия

Для получения явного инстантонного решения БПШТ
используем одно упрощающее предположение: мы будем
искать решение, симметричное относительно вращений в
4-мерном евклидовом пространстве, то есть преобразова-
ний из группы SO(4). Операторы, образующие базис соот-
ветствующей алгебры Ли, имеют вид

ξ̂
14

= x3∂2 − x2∂3 , ξ̂
24

= x1∂3 − x3∂1 , ξ̂
34

= x2∂1 − x1∂2 ,

ξ̂
23

= x4∂1 − x1∂4 , ξ̂
31

= x4∂2 − x2∂4 , ξ̂
12

= x4∂3 − x3∂4 .

Здесь для нумерации операторов из соображений удобства
используется не один, а пара антикоммутирующих между
собой индексов. Благодаря такому подходу, все шесть ба-
зисных операторов могут быть записаны с помощью одной
формулы

ξ̂
pq

= ξ
pq

m∂m = εpqmnxn∂m, p, q = 1, . . . , 4. (3.18)

Коммутационные соотношения для них выглядят следую-
щим образом

ξ̂
mn

, ξ̂
pq

= εsnpq ξ̂
ms
− εmspq ξ̂

sn
. (3.19)

Для нахождения матриц Wmn ∈ su(2), соответствую-
щих операторам ξ̂

mn
∈ so(4), необходимо решить уравне-

ние (1.23). Как было указано в лекции 1, если величи-
ны Wmn не зависят от координат (x1, . . . , x4) и отображе-
ние W : so(4) → su(2) является гомоморфизмом, то условие
(1.23) выполняется тождественно.
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Воспользуемся этим и подберём элементы алгебры Ли
su(2) так, чтобы они удовлетворяли коммутационным со-
отношениям вида (3.19). Это несложно сделать, учитывая
тождество (3.11):

Wmn = W ξ̂
mn

= ηmn . (3.20)

г. Решение БПШТ

Используя полученный результат, найдём SO(4)-
симметричное выражение для потенциалов калибровочно-
го поля Ak. Для это запишем условие симметрии

£ ξ
pq
Ak = εpqmnxn ∂mAk + Amεpqmk =

[
Ak,ηpq

]
(3.21)

и свернём его с xq

Amεpqmkxq = [Ak,ηpqxq] .

Пусть k = p, тогда

[Ak,ηkqxq] = 0 (суммирования по k нет!) .

Отсюда

Ak = αk ηkqxq (суммирования по k нет!) ,

где αk — некоторые, вообще говоря, различные множители.
Пусть теперь k =/ p, тогда из антисимметричности левой

части относительно перестановки этих индексов следует,
что

[Ak,ηpqxq] + [Ap,ηkqxq] = 0

или

(αk − αp) [ηksxs,ηpqxq] = 0 (суммирования по k и p нет!) .
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Так как второй сомножитель отличен от нуля при k =/ p, то
αk = αp = α. Следовательно,

Ak = α ηkqxq . (3.22)

Подставляя полученное выражение в условие симметрии
(3.21) и используя тождество (3.11), получаем

εpqmnxn ∂mα = 0 ⇒ α = α(R), R =
√

xmxm .

Таким образом, калибровочное поле является SO(4)-
симметричным, если его потенциал имеет вид

Ak = α(R) ηkqxq . (3.23)

Найдём теперь компоненты тензоров Fkm и
∗
Fkm:

Fkm =
(
−2α + R2α2

)
ηkm +

(
dα
dR

+ Rα2

)
· (xkηms − xmηks)

xs

R
,

(3.24)
∗
Fkm = −

(
2α + R

dα
dR

)
ηkm −

(
dα
dR

+ Rα2

)
· (xkηms − xmηks)

xs

R
.

(3.25)

Отсюда из условия самодуальности получаем

Fkm =
∗
Fkm ⇒

(
dα
dR

+ Rα2

) [
R ηkm + 2(xkηms − xmηks)

xs

R

]
= 0 .

Поскольку второй сомножитель в левой части полученного
равенства отличен от нуля, то

dα
dR

+ Rα2 = 0 ⇒ α =
2

R2 + λ2 , (3.26)
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где λ2 — константа интегрирования, принимающая толь-
ко положительные значения, так как в противном случае
искомое решение будет сингулярным.

Подставляя найденные выражения в (3.23) и (3.24), по-
лучаем явные формулы для потенциала и напряжённости
калибровочного поля инстантона

Ak =
2 ηksxs

R2 + λ2 , Fkm = − 4 λ2 ηkm

(R2 + λ2)2
, (3.27)

или

Aa
k =

2
g
· ηa

ksxs

R2 + λ2
, Fa

kl = −4
g
· λ2 ηa

kl

(R2 + λ2)2
. (3.28)

Топологический заряд для данной конфигурации мо-
жет быть вычислен напрямую из (3.1)

q =
g 2

32π2

∫
d4x Fa

km

∗
Fa

km =
λ4

2π2

∫
d4x

ηa
kmηa

km

(R2 + λ2)4
=

= 12λ4

+∞∫
0

dR
R3

(R2 + λ2)4
= 1. (3.29)

Следовательно, мы имеем явную реализацию 1-
инстантонного решения уравнений Янга-Миллса. Данное
решение можно обобщить, если в качестве центра сим-
метрии взять не начало координат, а произвольную точку
с координатами (c1, . . . , c4). В этом случае мы получаем
полное 1-инстантонное решение БПШТ, зависящее от 5
параметров c1, . . . , c4, λ, не исчезающих при калибровочных
преобразованиях и связанных с положением и масштабом
инстантона

Ak = 2 · ηkm (xm − cm)

R2 + λ2 , Fkm = −4 · ηkmλ2(
R2 + λ2

)2 ,

R2 = (xm − cm) (xm − cm) . (3.30)
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Выражение для полного 1-антиинстантонного реше-
ния можно получить, если в (3.30) заменить один тензор
’т Хофта на другой

Ak = 2 · η̄km (xm − cm)

R2 + λ2 , Fkm = −4 · η̄kmλ2(
R2 + λ2

)2 . (3.31)

Это решение также является SO(4)-симметричным, но при
этом Wpq = −η̄pq.



Лекция 4

а. Введение

Понятие магнитного монополя как изолированного то-
чечного источника магнитного поля было введено Дира-
ком. Электричество и магнетизм участвуют в уравнениях
Максвелла на равных основаниях, но электрические заря-
ды возникают естественным образом, магнитные же за-
ряды, или монополи, — нет. Тем не менее, постулируя их
существование, Дирак предложил убедительный (и едва
ли не единственный) аргумент, объясняющий квантование
электрического заряда, то есть тот факт, что электриче-
ские заряды всегда являются целыми кратными некоторо-
го фиксированного заряда (заряда электрона).

После появления неабелевых калибровочных теорий, в
которых группа U (1) максвелловской теории расширяет-
ся до какой-либо неабелевой группы, например до SU (2),
’т Хофт и Поляков обнаружили, что существуют гладкие
полевые конфигурации калибровочных полей с введён-
ным дополнительно скалярным полем, которые на боль-
ших расстояниях ведут себя как монополи Дирака. По су-
ществу оказалось, что нелинейные уравнения, обобщаю-
щие линейные уравнения Максвелла, допускают решения
солитонного типа, в которых сингулярная точечная части-
ца Дирака заменяется гладкой полевой конфигурацией,
приближенно локализованной в точке, где находилась ча-
стица.

Монополь ’т Хофта-Полякова описан лишь численно.
Однако имеется упрощённая модель, введённая Прасадом
и Соммерфильдом и дополненная Богомольным, в кото-
рой найдены явные решения для случая одного монополя.
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Они называются монополями Богомольного-Прасада-Сом-
мерфильда, или БПС-монополями.

Способ построения монопольных решений основан на
связи уравнений Богомольного с уравнениями самодуаль-
ности. Было обнаружено, что хотя мы ищем статические
решения системы полей Янга-Миллса-Хиггса в простран-
стве Минковского, уравнения Богомольного на самом деле
эквивалентны независящим от мнимого времени самоду-
альным уравнениям Янга-Миллса в евклидовом 4-мерном
пространстве.

б. Модель Янга-Миллса-Хиггса

Рассмотрим модель, состоящую из взаимодействующих
полей Янга-Миллса и скалярного поля Хиггса:

LЯМХ =
1
4

Fa
kmFa km +

1
2

D̂ kφ
a D̂ kφa +V (φ). (4.1)

Здесь φ = φata — скалярное поле Хиггса, потенциальная
энергия самодействия которого

V (φ) =
λ
4

(
v2 − φ2

)2
, φ2 = φaφa , (4.2)

зависит от квадрата вектора φa, а производная поля φa

имеет вид
D̂ kφ

a = ∂kφ
a + g εabcAb

kφ
c. (4.3)

Запишем теперь уравнения калибровочного поля в мо-
дели Хиггса:

D̂ kFa km = g εabcφ
bD̂ mφc. (4.4)

Для самого поля Хиггса получим уравнение

D̂ kD̂ kφa = −λ
(

v2 − φ2
)

φa. (4.5)
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Лагранжиан LЯМХ обладает явной калибровочной инвари-
антностью относительно группы SU (2) преобразований в
изотопическом пространстве. Потенциальная энергия V (φ)
в зависимости от знака v2 имеет минимум либо при φ2 = 0,
если v2 < 0, либо при φ2 = v2, если v2 > 0. Классический
вакуум определяется как асимптотическое решение при
r →∞, обеспечивающее минимум энергии полей E .

При v2 < 0 вакуум оказывается симметричным φa| r→∞ =
= 0, обладая симметрией лагранжиана. При v2 > 0 вакуум
теряет симметрию лагранжиана:

φa

r→∞
= vΦa , (4.6)

где Φa — некоторый произвольно выбранный единичный
вектор в изопространстве, ΦaΦa = 1. Множество вакуумов,
определяемое этим условием образует пространство, пред-
ставляющее собой двумерную сферу. Выбор конкретного
вакуума (4.6) сводится к выбору определенного направле-
ния Φa в изопространстве, что нарушает симметрию SU (2).
Это явление носит название спонтанного нарушения сим-
метрии. Построенное на вакууме (4.6) решение уравнений
поля обладает остаточной U (1)-симметрией, не меняющей
направления Φa.

Как уже было сказано выше, решение уравнений (4.4),
(4.5) даже при наличии сферической симметрии может
быть найдено только численно. Тем не менее, существу-
ет предельный случай λ → 0 (предел БПС), для которого
решение получается в явном виде. Рассмотрим этот слу-
чай подробнее.

В пределе БПС лагранжиан модели и уравнения поля
имеют вид

LЯМХ =
1
4

Fa
kmFa km +

1
2

D̂ kφ
a D̂ kφa , (4.7)
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D̂ kFa km = g εabcφ
bD̂ mφc

D̂ kD̂ kφa = 0
⇒ D̂ kF

km = g2
[
φ, D̂ mφ

]
D̂ kD̂ kφ = 0

(4.8)

Предположим теперь, что искомые нами решения, во-
первых, являются статическими, то есть потенциалы ка-
либровочного поля Am и скалярное поле φ не зависят от
x4. Во-вторых, будем считать, что обсуждаемые решения
относятся к так называемому «магнитному» типу, поэтому

A4 ≡ 0 . (4.9)

Учитывая эти допущения, получаем, что все выражения, в
которых хотя бы один индекс равен 4, обращаются в нуль:

D̂ 4φ = 0 , Fm4 = 0 , D̂ 4Fkm = 0 и т.д.

Отсюда вытекает, что уравнения (4.8) можно редуцировать
к виду

D̂ cF
cd = g 2

[
φ, D̂ dφ

]
,

D̂ c D̂ cφ = 0 , (4.10)

где индексы c и d могут принимают значения от 1 до 3.

в. Переход к чисто калибровочной модели

Уравнения (4.10) можно исследовать и непосредственно
в том виде, как они написаны. Однако существует важное,
с математической точки зрения, соответствие между дан-
ной моделью и чисто калибровочной теорией в евклидовом
4-мерном пространстве. Рассмотрим новое статическое ка-
либровочное поле с потенциалом Ãm, которое связано с ис-
ходными конструкциями следующими соотношениями

Ãm =

{
gφ, m = 4 ,
Ac, m = c = 1, 2, 3 .

(4.11)
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Компоненты тензора напряжённости нового поля F̃km име-
ют вид

F̃c4 = g D̂ cφ , F̃cd = Fcd . (4.12)

Преобразуем теперь уравнения (4.10), используя полу-
ченные соотношения:

D̂ cF̃
cd =

[
Ã4, F̃ d

4

]
= −D̂ 4F̃4

d ,

D̂ cF̃
c
4 = 0 . (4.13)

Второе уравнение в этом случае выглядит как одно из
уравнений Янга-Миллса в чисто калибровочной модели
без скалярного поля. Для того, чтобы первое уравнение
также превратилось в уравнение Янга-Миллса, очевидно,
необходимо считать, что g44 = +1, то есть использовать
метрику 4-мерного евклидового пространства.

Таким образом, в результате наших преобразований от
системы (4.10) мы приходим к одному соотношению

D̂ kF̃km = 0 , (4.14)

где, благодаря положительной определённости евклидовой
метрики, мы можем не различать верхние и нижние ин-
дексы.

г. Функционал энергии системы полей

Для дальнейших исследований нам будет необходим
функционал энергии рассматриваемой системы. Для его
вывода мы применим способ, аналогичный использованно-
му в лекции 2. Свернём первое и второе уравнения в (4.8)
с Fa

im и D̂ kφa соответственно и получим следующие равен-
ства:

0 = D̂ kFkm aFa
im − g εabcFa

imφbD̂ mφc =

= ∂k

[
Fa

imFkm a − 1
4

δk
i F

a
mp Fmp a

]
− g εabcFa

imφbD̂ mφc , (4.15)
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0 = D̂ kD̂ kφa = ∂k
(
D̂ kφaD̂ iφ

a)− D̂ kφaD̂ kD̂ iφ
a =

= ∂k
(
D̂ kφaD̂ iφ

a)− D̂ kφaD̂ iD̂ kφ
a + D̂ kφa[D̂ i, D̂ k]φ

a =

= ∂k
(
D̂ kφaD̂ iφ

a)− 1
2

∂i
(
D̂ kφaD̂ kφ

a) + g εabcD̂ kφaF b
ikφ

c =

= ∂k

[
D̂ iφ

aD̂ kφa − 1
2

δk
i D̂ mφaD̂ mφa

]
+ g εabcFa

ikφ
bD̂ kφc .

(4.16)

Далее, складывая их, мы приходим к выражению

0 = ∂kTk
i ,

где

Tik = Fa
imFk

m a − 1
4
gikFa

mp Fa mp + D̂ iφ
aD̂ kφ

a − 1
2

gikD̂ mφaD̂ mφa

(4.17)
— тензор энергии импульса системы, составленной из ска-
лярного поля Хиггса и калибровочного поля в пределе
БПС.

Найдём теперь выражение для плотности энергии T44

рассматриваемой системы в статическом, чисто магнитном
случае:

T44 = Fa
4mF4

m a − 1
4
g44Fa

mp Fa mp + D̂ 4φ
aD̂ 4φ

a −

− 1
2

g44D̂ mφaD̂ mφa =
1
4
Fa

bc Fa bc +
1
2

D̂ cφaD̂ cφ
a (4.18)

и перепишем его, используя формулы (4.11), (4.12) и пере-
ходя к евклидовой метрике

T44 =
1
4
F̃a

bc F̃a bc +
1
2

gcdF̃a
c4F̃

a
d4 =

1
4
F̃a

km F̃a km =
1
4
F̃a

kmF̃a
km . (4.19)
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В результате мы получим, что выражение для функци-
онала энергии системы для статического, чисто магнитно-
го случая имеет вид

E ≡
∫

d3x T44 =
1
4

∫
d3x F̃a

kmF̃a
km . (4.20)

Из-за очевидного удобства данного подхода везде в
последующих параграфах мы будем использовать только
формулы (4.14) и (4.19) вместо (4.10) и (4.18), а также для
простоты опускать в них знак тильды над компонентами
введённого нами вспомогательного поля.

д. Определение самодуального монополя

Исследование свойств статических решений уравнений
Янга–Миллса, реализующих абсолютные минимумы энер-
гии (4.19), мы будем осуществлять по той же схеме, что и
в случае инстантонов.

Как и для функционала действия S, для энергии спра-
ведливо неравенство

E =
1
4

∫
d3x Fa

kmFa
km >

1
4

∣∣∣∣∫ d3x Fa
km

∗
Fa

km

∣∣∣∣ . (4.21)

Знак равенства в (4.21), очевидно, достигается только то-
гда, когда

∗
Fkm = ±Fkm , (4.22)

Последнее равенство является в точности условием (ан-
ти)самодуальности для статических калибровочных по-
лей, поэтому решение этих уравнений мы будем называть
самодуальным монополем, или монополем Богомольного–
Прасада–Соммерфильда (БПС-монополем).
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Вычислим теперь значение интеграла, стоящего в пра-
вой части неравенства (4.21). Так как подынтегральное вы-
ражение представляет собой 3-дивергенцию от некоторого
вектора

1
4

Fa
km

∗
Fa

km = Fa
c4

∗
Fa

c4 = ∂c

(
Aa

4

∗
Fa

c4

)
, (4.23)

то с помощью теоремы Гаусса мы получаем, что

1
4

∫
d3x Fa

km

∗
Fa

km =
∫

S2
∞

d2σc Aa
4

∗
Fa

c4 , (4.24)

где интегрирование производится по двумерной сфере
бесконечного радиуса.

При этом мы предполагаем, что на бесконечности ком-
поненты тензора напряжённости калибровочного поля об-
ращаются в нуль. Из этого условия можно получить два
важных для нас следствия. Во-первых, сворачивая равен-
ство

Fa
d4 = ∂dAa

4 + g εabcAb
dA

c
4

r→∞
= 0

с Aa
4, находим, что

∂d
(
Aa

4A
a
4

)
r→∞

= 0 ⇒ Aa
4

r→∞
=

v

g
Φa , (4.25)

где величина Φa подчиняется нормировочному соотноше-
нию ΦaΦa = 1, а v — некоторая неотрицательная константа
(сравните с формулой (4.6)). Во-вторых, выражая из него
остальные компоненты потенциала, получаем, что на бес-
конечности они должны удовлетворять формуле

Aa
d = −1

g
εabcΦb ∂dΦc + Φa (

Ab
dΦ

b) . (4.26)
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Отсюда найдём асимптотическое выражение для Aa
4

∗
Fa

c4:

Fa
bc =

1
g

ΦaεdefΦd∂bΦe∂cΦf − 2
g

εade∂bΦd∂cΦe +

+ Φa [
∂b

(
Ad

cΦ
d)− ∂c

(
Ad

bΦ
d)] ⇒

∗
Fa

c4A
a
4 = − v

2g 2
εcef εabdΦa∂eΦb∂fΦd +

v

g
εcef ∂e

(
Aa

f Φ
a) . (4.27)

Сфера S2
∞ может быть параметризована двумя парамет-

рами ξα (α=1, 2), при этом элемент площади d2σc запишется
в виде

d2σc =
1
2

εcef εαβ
∂xe

∂ξα
·

∂xf

∂ξβ
d2ξ . (4.28)

Собирая вместе формулы (4.27), (4.28) и учитывая, что∫
S2
∞

d2σcεcef ∂e
(
Aa

f Φ
a) =

∫
d3x εcef ∂c∂e

(
Aa

f Φ
a) ≡ 0 ,

получаем следующее выражение для исследуемого инте-
грала ∫

S2
∞

d2σc

∗
Fa

c4A
a
4 = − v

2g 2

∫
S2
∞

d2ξ εabc εαβΦa ∂Φb

∂ξα
· ∂Φc

∂ξβ
=

= ± v

g 2

∫
S2
∞

d2ξ

√
det

(
∂Φa

∂ξα
· ∂Φa

∂ξβ

)
,

где для нахождения последнего выражения мы воспользо-
вались тождеством[

εabc εαβΦa ∂Φb

∂ξα
· ∂Φc

∂ξβ

]2

= 4 det

(
∂Φa

∂ξα
· ∂Φa

∂ξβ

)
.
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Так как полученный определитель представляется собой
определитель метрического тензора на единичной сфере
ΦaΦa = 1, исследуемый интеграл равен

1
4

∫
d3x Fa

km

∗
Fa

km =
∫

S2
∞

d2σc Aa
4

∗
Fa

c4 = ±4πv

g 2
n , (4.29)

где n — целое неотрицательное число, поскольку, если точ-
ка (ξ1, ξ2) пробегает по сфере один раз, вектор Φa пробегает
единичную сферу ΦaΦa = 1 n раз, давая каждый раз вклад
в виде 3-мерного телесного угла 4π.



Лекция 5

а. Классификация монопольных решений

Таким образом, мы устанавливаем следующее неравен-
ство для функционала энергии E :

E >
4πv

g 2
· n, n = 0, 1, . . . (5.1)

Равенство достигается только для статических (анти)само-
дуальных полей.

Различные монопольные решения удобно различать
между собой, используя понятие магнитного заряда

qm =
g

16π
lim
r→∞

(
Aa

4A
a
4

)−1/2 ·
∫

d3x Fa
km

∗
Fa

km , (5.2)

который принимает значения из множества целых чисел.
Для нетривиальных самодуальных калибровочных полей
магнитный заряд является положительным (qm = +n), и в
этом случае говорят о собственно монополях. Для антиса-
модуальных полей он является отрицательным (qm = −n).
Тогда соответствующие решения называют антимонополя-
ми. В тривиальном случае, когда Fa

km ≡ 0, заряд, разумеет-
ся, равен нулю.

Точно также, как и в случае инстантонов, приведённые
ранее рассуждения вовсе не гарантируют существование
самих монопольных решений. Эта задача может быть ре-
шена только путём явного их построения. В дальнейшем,
используя свойства симметрии калибровочных полей, мы
получим явные монопольное и антимонопольное решения
с зарядом, по модулю равным единице.
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б. Статическая SO(3)-симметрия

Мы будем искать решение, симметричное относитель-
но вращений в 3-мерном евклидовом пространстве, то есть
преобразований из группы SO(3). Операторы, образующие
базис соответствующей алгебры Ли, имеют вид

ξ̂
1

= x3∂2 − x2∂3 , ξ̂
2

= x1∂3 − x3∂1 , ξ̂
3

= x2∂1 − x1∂2 ,

или, в короткой записи,

ξ̂
a

= ξ
a

m∂m = −εabcxb∂c, a, b, c = 1, 2, 3. (5.3)

Кроме того, мы ограничиваем себя поиском только стати-
ческих решений, следовательно к указанным выше трём
операторам необходимо присоединить четвёртый оператор

ξ̂
4

= ∂4 ,

коммутирующий с остальными.
Коммутационные соотношения для них выглядят сле-

дующим образом

ξ̂
a
, ξ̂

b
= εabcξ̂

c
, ξ̂

a
, ξ̂

4
= 0 . (5.4)

Для нахождения матриц Wm ∈ su(2), соответствующих
операторам ξ̂

m
∈ so(3)⊕ gl(1), необходимо решить уравнение

(1.23). Так же как и в лекции 3, мы будем считать, что
величины Wm не зависят от координат (x1, . . . , x4) и, таким
образом, отображение W : so(3) ⊕ gl(1) → su(2) является
гомоморфизмом.

Воспользуемся этим и подберём элементы алгебры Ли
su(2) так, чтобы они удовлетворяли коммутационным со-
отношениям вида (5.4). Это несложно сделать, если взять
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Wa = W ξ̂
a

= ta , W4 = 0 . (5.5)

в. Решение БПС

Используя полученный результат, найдём выражение
для потенциалов калибровочного поля Ak. Для этого запи-
шем условия симметрии

£ξ
a
A4 = −εabcxb ∂cA4 = [A4, ta] , (5.6)

£ξ
a
Ad = −εabcxb ∂cAd − εadcAc = [Ad, ta] , (5.7)

£ξ
4

Ak = ∂4Ak = 0 , (5.8)

причём последнее равенство означает, очевидно, что все
компоненты потенциала не зависят от x4. Если свернуть
обе части (5.6) с xa/r, получаем

[A4, tr] = 0 , tr ≡
xa

r
ta ,

откуда следует, что
A4 = h tr .

Подставляя найденное выражение обратно в (5.6), найдём
условие на множитель h:

−εabcxb ∂ch tr − h εabd
xb

r
td = h

xb

r
[tb, ta] ⇒

⇒ εabcxb ∂ch = 0 ⇒ h = h(r) .

В результате мы приходим к тому, что в статическом сфе-
рически симметричном случае

A4 = h(r) tr = h(r)
xa

r
ta . (5.9)
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Определим теперь выражение для остальных компо-
нент потенциала. Вначале свернём (5.7) с xaxd/r2 :[

Ad
xd

r
, tr

]
= 0 ⇒ Ad

xd

r
= G1 tr .

Полученное равенство позволяет нам записать Aa в виде
суммы трёх слагаемых

Aa = G1
xa

r
tr +

G2

r
pa +

1−G3

r
sa ,

где G2 и G3 произвольные пока функции координат, а ор-
тогональные к xa/r элементы из алгебры Ли pa и sa опре-
деляются соотношениями

pa = ta −
xa

r
tr , sa = εabc

xb

r
t(c) . (5.10)

Кроме того, нетрудно показать прямыми вычислениями
справедливость следующих тождеств:

[tr, sa] = pa , [pa, tr] = sa , [sa,pb] =
(

δab −
xaxb

r2

)
tr ,

[pa,pb] = εabctc +
xa

r
sb −

xb

r
sa , [sa, sb] = εabc

xc

r
tr ,

∂atr =
1
r

pa , ∂apb = −1
r

(
δab −

xaxb

r2

)
tr −

xb

r2
pa ,

∂asb = −1
r

εabctc −
xa

r2
sb ,

εabcsc =
xa

r
pb −

xb

r
pa . (5.11)

Подставляя найденное нами выражение для Aa в (5.7)
и используя тождества (5.11), получаем

£ξ
a
G1

xd

r
tr + £ξ

a
G2

1
r

pd −£ξ
a
G3

1
r

sd = 0 .
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Свёртка этого равенства с xd даёт

£ξ
a
G1 = 0 ⇒ G1 = G1(r) .

Более того, так как величины pd и sd являются независи-
мыми,

£ξ
a
G2 = £ξ

a
G3 = 0 ⇒ G2 = G2(r) , G3 = G3(r) .

Таким образом, мы приходим к следующему выраже-
нию для компонент Aa в статическом сферически симмет-
ричном случае:

Aa = G1(r)
xa

r
tr +

G2(r)
r

pa +
1−G3(r)

r
sa = G1(r)

xaxb

r2
t(b) +

+
G2(r)

r

(
t(a) −

xaxb

r2
t(b)

)
+ (1−G3(r)) εabc

xb

r2
t(c) . (5.12)

Покажем теперь, что из трёх имеющихся произволь-
ных функций существенными являются только две. Для
этого подвергнем найденные выражения для потенциалов
калибровочному преобразованию вида

U = exp(θ(r) tr) = cos
θ
2

+ 2 tr sin
θ
2

. (5.13)

Важно отметить, что под действием данного преобразова-
ния матрицы Wm не изменяются

U−1taU =
xa

r
tr + cos θ pa + sin θ sa ,

£ξ
a
U = −2 sin

θ
2

sa, U−1£ξ
a
U = (1− cos θ)pa + sin θ sa

⇓
W′

a = U−1taU + U−1£ξ
a
U = ta , W′

4 = U−1£ξ
4

U = 0 .
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Используя соотношения

U−1trU = tr , U−1paU = cos θ pa + sin θ sa ,

U−1saU = − sin θ pa + cos θ sa ,

U−1∂aU =
dθ
dr

xa

r
tr +

sin θ
r

pa +
(1− cos θ)

r
sa ,

найдём компоненты преобразованного потенциала

A′
a =

(
G1 +

dθ
dr

)
xa

r
tr + (cos θG2 + sin θG3)

pa

r
+

+ (sin θG2 − cos θG3 + 1)
sa

r
, (5.14)

A′
4 = h tr . (5.15)

Из полученных формул мы получаем, что под действи-
ем калибровочного преобразования (5.13) функции h, G1,
G2, G3 изменяются следующим образом:

h′ = h , G′
1 = G1 +

dθ
dr

,

G′
2 = cos θG2 + sin θG3 , G′

3 = − sin θG2 + cos θG3 . (5.16)

При этом очевидно, что, выбирая θ(r), можно добиться об-
нуления любой из трёх функций Ga, a = 1, 2, 3. Для опре-
делённости будем считать, что G2 = 0. Таким образом, мы
получаем окончательное выражение для калибровочного
потенциала

A4 = h(r) tr , Aa = G1(r)
xa

r
tr +

1−G3(r)
r

sa . (5.17)

Найдём теперь статическое сферически симметричное
решение уравнений самодуальности. Для этого, пользуясь
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тождествами (5.11), вычислим компоненты тензора напря-

жённости Fkm и дуального тензора
∗
Fkm:

Fa4 =
dh
dr

xa

r
tr +

hG3

r
pa , (5.18)

Fab = −G1G3

r2
εabcsc +

1
r
dG3

dr
εabcpc +

G 2
3 − 1
r2

εabc
xc

r
tr , (5.19)

∗
Fa4 =

1
2

εabcFbc =
G 2

3 − 1
r2

xa

r
tr +

1
r
dG3

dr
pa −

G1G3

r2
sa , (5.20)

∗
Fab = εabcFc4 =

hG3

r
εabcpc +

dh
dr

εabc
xc

r
tr . (5.21)

Уравнение
∗
Fkm = ±Fkm приводит нас к следующей системе:

dh
dr

= ±G 2
3 − 1
r2

,
dG3

dr
= ±hG3 , G1 G3 = 0 . (5.22)

Кроме того, нужно учитывать, что мы ищем решение без
сингулярностей, следовательно в начале координат долж-
но выполняться условие G 2

3 (0) = 1. Поскольку функция G3

не может тождественно равняться нулю, из последнего ра-
венства в (5.22) мы получаем, что

G1(r) = 0 .

Решим теперь оставшиеся уравнения. Для этого выра-
зим функцию h из второго уравнения и подставим в пер-
вое:

d
dr

(
1
G3

dG3

dr

)
=

G 2
3 − 1
r2

. (5.23)

Решением этого уравнения являются следующие функции

G3 = ± vr
sh(v(r + r0))

, G3 = ± vr
sin(v(r + r0))

, G3 = ± r
r + r0

.
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Для начала заметим, что из формул (5.16) следует, что
знак, стоящий впереди, не является существенным, так
как его всегда можно изменить с помощью калибровочно-
го преобразования (5.13), полагая θ = π. Кроме того, если
потребовать ограниченность искомой функции и справед-
ливость условия G 2

3 (0) = 1, то мы должны полностью от-
бросить второй вариант, а в остальных считать, что r0 = 0,
то есть

G3 =
vr

sh vr
или G3 = 1 .

В случае, когда G3 = 1, из (5.22) следует, что dh/dr = 0.
Это означает, что все компоненты тензора Fkm равны нулю,
и мы имеем дело с чистой калибровкой. Такое тривиальное
решение нас интересовать не будет.

Таким образом, вычисляя выражение для h(r), прихо-
дим к следующему решению уравнений самодуальности

G3(r) =
vr

sh vr
, h(r) = ±

(
1
r
− v cth vr

)
, (5.24)

где знак плюс соответствует собственно монопольному ре-
шению, а минус — антимонопольному. Константу v из со-
ображений удобства будем считать положительной.

Магнитный заряд для данной конфигурации может
быть вычислен напрямую, применяя формулу (5.2). На
бесконечности, как и положено (см. (4.25)),

Aa
4 =

1
g

h(∞)
xa

r
= ∓v xa

g r
⇒ Aa

4A
a
4 =

v2

g 2
.
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Далее, используя формулы (5.18)-(5.21), получаем

qm =
g 2

16πv

∫
d3x Fa

km

∗
Fa

km =
1
v

+∞∫
0

dr
[
dh
dr

(
G 2

3 − 1
)

+ 2hG3
dG3

dr

]
=

=
1
v

+∞∫
0

d
[
h(G2

3 − 1)
]

=
1
v

[
h(G2

3 − 1)
]∣∣∣+∞

0
= ±1 . (5.25)

Следовательно, мы имеем явные реализации моно-
польного и антимонопольного решений уравнений Янга-
Миллса

A4 = ±
(

1
r
− v cth vr

)
xa

r
ta , (5.26)

Aa =
(
1− vr

sh vr

)
εabc

xb

r2
tc . (5.27)

с магнитным зарядом, по модулю равным единице.
Данное решение, очевидно, можно обобщить, если в

качестве центра симметрии взять не начало координат, а
произвольную точку с координатами (c1, c2, c3). В этом слу-
чае мы получаем полное монопольное решение БПС, за-
висящее от трёх параметров — координат центра монопо-
ля, не исчезающих при калибровочных преобразованиях,
и положительной константы v, связанной с параметрами
конкретной модели в эквивалентной теории Янга-Миллса-
Хиггса (см. (4.6)).
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