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Предисловие

Предлагаемое вниманию читателей учебно-методиче-
ское пособие представляет собой первую часть конспек-
та из девяти лекций, посвящённых различным вопросам
курса «Калибровочные поля», изучаемого магистрантами
Института физики Казанского федерального университе-
та.

Традиционно теория калибровочных полей излагается
в учебниках и обзорах, посвящённых квантовой теории
поля. Однако многие понятия калибровочных теорий появ-
ляются уже на уровне классической теории поля. Соответ-
ственно, чтение данного пособия не требует знания кван-
товой теории. В то же время предполагается, что читатель
знаком с основами математического анализа, линейной ал-
гебры, тензорного анализа, вариационного исчисления и
квантовой механики.

В первой лекции вводятся основные математические
понятия из теории групп и алгебр Ли, используемые нами
дальнейшем. Следующие три лекции содержат изложение
основных идей и понятий теории калибровочных полей, а
также построение калибровочно инвариантного лагранжи-
ана поля Янга–Миллса и получение с помощью вариаци-
онной процедуры уравнений Янга–Миллса.

Исследованию наиболее известных нетривиальных ре-
шений этих уравнений — монопольного решения Бого-
мольного–Прасада–Соммерфильда и инстантонного реше-
ния Белавина–Полякова–Шварца–Тюпкина посвящено ме-
тодическое пособие «Классические калибровочные поля и
их симметрии», представляющее собой вторую часть на-
стоящего конспекта лекций.



Обозначения и основные формулы

Цель этого раздела — ввести условные обозначения и
дать сводку необходимых в дальнейшем формул.

На протяжении всех лекций мы будем иметь дело с
плоским 4-мерным пространством-временем Минковского
с координатами x1, x2, x3, x4, при этом последняя коорди-
ната считается временно́й. Метрика такого пространства в
задаётся с помощью тензора gik:

ds2 = gik dxidxk = (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 .

Используемый нами полностью антисимметричный по-
стоянный тензор εα1α2...αn в n-мерном пространстве (тензор
Леви-Чивиты) определяется как

εα1α2...αn =


+1, если α1, α2, . . . , αn

есть чётная перестановка 1, 2, . . . , n;
−1, если α1, α2, . . . , αn

есть нечётная перестановка 1, 2, . . . , n;
0 в остальных случаях.

Как следствие этого определения, ε12 = ε123 = ε1234 = 1.
Для тензора εα1α2...αn справедливо следующее тождество:

εα1α2...αnεβ1β2...βn = (−1)S

∣∣∣∣∣∣∣∣∣
δβ1

α1
δβ2

α1
. . . δβn

α1

δβ1
α2

δβ2
α2

. . . δβn
α2

. . .
δβ1

αn δβ2
αn . . . δβn

αn

∣∣∣∣∣∣∣∣∣ ,

где число S — количество знаков минус в сигнатуре мет-
рики рассматриваемого пространства.

Также в данном пособии нами используются приведён-
ные ниже обозначения:
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1. Запись f (x) означает, что функция f зависит от всех
координат пространства, т. е. f (x) ≡ f (x1, x2, x3, x4);

2. Для производной по координате xm применяется сим-
вол ∂m.

3. Напротив, штрих « ′» всюду в тексте обозначает ве-
личину, полученную из исходной в результате неко-
торого калибровочного преобразования;

4. Для обозначения различных групп Ли применяются
заглавные латинские буквы, в то время как для соот-
ветствующих им алгебр Ли — строчные готические:
например, G и g, SU (N) и su(N) и т. д.;

5. Использование индексов в формулах настоящего по-
собия подчинено следующему правилу: латинские
буквы из середины алфавита ( i, k, m и т. д.) — для ин-
дексов, принимающих значения от 1 до 4, латинские
буквы из начала алфавита (a, b, c и т. д.) — для ин-
дексов, пробегающих от 1 до 3. Кроме того, нами при-
меняются строчные латинские буквы, записанные в
скобках ( (a), (b), (c) и т. д.), для обозначения группо-
вых индексов и строчные греческие — для всех про-
чих случаев;

6. Различные матрицы, встречающиеся в тексте насто-
ящего конспекта мы будем выделять, как правило,
полужирным шрифтом. Для эрмитово сопряжённой
и обратной матрицы к матрице A используются обо-
значения A† и A−1 соответственно. Символом IN мы
будем обозначать единичную матрицу размера N ×N ,
если же уточнения её размера не требуется, или он
ясен из контекста, то индекс N опускается.



Лекция 1

а. Группы

Группой называется множество G, в котором определе-
на операция умножения, обладающая следующими свой-
ствами:

1. ассоциативность — для всех a, b, c ∈ G справедливо
(ab)c = a(bc);

2. существование единичного элемента e ∈ G, такого,
что для любого a ∈ G справедливо ae = ea = a;

3. существование обратного элемента a−1 ∈ G для каж-
дого a ∈ G, так что a−1a = aa−1 = e.

Если операция умножения коммутативна, то есть ab =
= ba для любых a, b ∈ G, то группу называют абелевой, в
противном случае — неабелевой.

Подгруппой H группы G называется подмножество H
множества G, которое само является группой по отноше-
нию к операции умножения, определённой в G. Иными
словами, единица группы G принадлежит подмножеству
H , и для любых элементов a, b из этого подмножества
ab ∈ H , a−1 ∈ H .

Приведём несколько примеров:

1) Группа U (1) — множество комплексных чисел z, по мо-
дулю равных единице (z = eiα, α ∈ R). Умножение в U (1) —
это умножение комплексных чисел, единица — это z = 1, а
обратный элемент к z — это z−1 = e−iα. Так как умножение
комплексных чисел коммутативно, U (1) — абелева группа.
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2) Группа GL(N , C) — множество комплексных матриц M
размера N × N с отличным от нуля определителем. Умно-
жение в GL(N , C) — это умножение матриц, единица IN —
единичная матрица N × N , обратный элемент к M — это
обратная матрица M−1. Очевидно, что группа GL(1, C) —
абелева, а группы GL(N , C) с N > 2 — неабелевы.

Группы в следующих примерах — это подгруппы группы
GL(N , C). Иначе говоря, мы будем иметь дело с матрицами
размера N × N , а операция умножения будет умножением
матриц.

3) Группа GL(N , R) — это группа действительных матриц
M размера N × N с отличным от нуля определителем.

4) Группа U (N) — это группа унитарных матриц A размера
N × N , то есть таких, что

A†A = IN (1.1)

(знаком † мы будем обозначать эрмитово сопряжение). От-
метим, что отсюда следует

|detA|2 = detAdetA† = 1 ⇒ |detA| = 1 .

5) Группа SU (N) — группа унитарных матриц с единич-
ным определителем (очевидно, что SU (N) — подгруппа в
U (N)). То, что групповые операции не выводят из множе-
ства SU (N) следует из равенств

detA1A2 = detA1 detA2 = 1 ,

detA−1 = (detA)−1 = 1 .

Группа SU (1) состоит, очевидно, только из одного единич-
ного элемента и, поэтому, нами рассматриваться не будет.
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6) Группа O(N) — группа действительных ортогональных
матриц, то есть таких, что

ATA = IN (1.2)

(знак T обозначает транспонирование). Ясно, что O(N) —
подгруппа одновременно и в GL(N , R), и в U (N). Отметим,
что отсюда следует, что detA = ±1, поскольку

detATA = detAT detA = (detA)2 = 1 .

7) Группа SO(N) — подгруппа группы O(N), состоящая из
матриц с определителем, равным единице.

Продолжим с полезными для дальнейшего определени-
ями. Гомоморфизмом групп G и G ′ называют отображение
f : G → G ′, согласованное с операциями умножения, то есть
для любых a, b ∈ G

f (ab) = f (a)f (b), f (e) = e′, f (a−1) = {f (a)}−1 (1.3)

где умножение и взятие обратного элемента в левой и пра-
вой частях равенств понимаются в смысле групп G и G ′, а
e и e′ — единицы соответствующих групп.

Подгруппа N группы G называется нормальной, если
для любых a ∈ N , b ∈ G справедливо

b−1ab ∈ N .

Очевидно, что приведённому определению удовлетворяют
сама группа G и подгруппа, состоящая из одного единично-
го элемента. Такие нормальные подгруппы считаются три-
виальными. Группа G, не содержащая иных нормальных
подгрупп, кроме тривиальных, называется простой.
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б. Алгебры Ли

Линейное пространство g с заданной на нём билиней-
ной операцией [ , ] называется алгеброй Ли, если указан-
ная операция удовлетворяет условиям

1. [x, x] = 0 для любого x ∈ g; из этого условия следует,
что операция [ , ] является антикоммутативной:

[x + y, x + y] = 0 ⇒ [x, y] = −[y, x] .

2. тождество Якоби: [[x, y], z]+[[y, z], x]+[[z, x], y] = 0 для
любых x, y, z ∈ g .

Величина [x, y] называется коммутатором элементов
x и y. Наиболее простым примером алгебры Ли является
множество квадратных матриц размера N × N с коммута-
тором, для любых матриц A и B определённым как

[A,B] = AB−BA . (1.4)

Легко проверить, что данная операция удовлетворяет всем
условиям, накладываемым на коммутатор в алгебре Ли.

Если коммутатор любых двух элементов x, y из алгеб-
ры Ли равен нулю [x, y] = 0, то такую алгебру Ли называют
абелевой, в противном случае — неабелевой.

Подалгеброй h алгебры g называется линейное подпро-
странство h ⊂ g, которое само является алгеброй по отно-
шению к коммутатору, определённому в g. Иными слова-
ми, [x, y] ∈ h для любых элементов x, y ∈ h.

Гомоморфизмом алгебр Ли g и g′ называется линейное
отображение f : g → g′, согласованное с коммутаторами
введёнными в обеих алгебрах:

f ([x, y]) = [f (x), f (y)] .
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Если это отображение является взаимнооднозначным, то
тогда говорят об изоморфизме алгебр Ли.

В алгебре Ли g как в векторном пространстве мож-
но выбрать базис {t(a)}. Размерность векторного простран-
ства в этом случае отождествляется с размерностью ал-
гебры Ли dim g.

в. Группы Ли

Для простоты в дальнейшем мы будем рассматривать
матричные группы, элементами которых являются матри-
цы (иначе говоря, будем рассматривать подгруппы груп-
пы GL(N , C)); хотя излагаемые здесь понятия имеют об-
щий характер, они проще всего формулируются для мат-
ричных групп. В пространстве матриц N × N естествен-
ным образом вводится понятие близости матриц (тополо-
гия): две матрицы близки, если все их элементы близки.
Так же вводится дифференцирование семейства матриц
A(ε) по действительному параметру ε: элементами матри-
цы

(
dA
dε

)
ij являются производные dAij(ε)

dε
матричных элемен-

тов Aij(ε). Вообще, пространство всех комплексных матриц
N ×N можно рассматривать как 2N2-мерное (действитель-
ное) евклидово пространство R2N2

, координатами которого
являются 2N2 матричных элементов ReAij и ImAij. Глад-
кие семейства матриц представляют из себя поверхности
(многообразия), вложенные в это евклидово пространство.
Например, гладкое семейство матриц A(ε), зависящее от
действительного параметра ε, представляет собой кривую
в R2N2

, а dA
dε

соответствует касательному вектору к этой
кривой. Гладкие (матричные) группы — это такие группы,
которые представляют собой гладкие многообразия в опи-
санном выше пространстве R2N2

. Такие группы мы будем
называть группами Ли. Простейшим нетривиальным при-
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мером группы Ли является группа U (1). Её также мож-
но считать матричной группой, считая комплексные числа
матрицами 1 × 1. Группа U (1) представляет собой окруж-
ность на плоскости комплексных чисел (на двумерном дей-
ствительном пространстве матриц 1 × 1). Группы U (N),
SU (N), O(N), SO(N) также являются группами Ли.

Для каждой точки (искривлённого) многообразия раз-
мерности k в 2N2-мерном евклидовом пространстве мож-
но определить касательное пространство к многообразию
в этой точке: это действительное векторное пространство
размерности k, состоящее из векторов, касательных к мно-
гообразию в данной точке. Касательным пространством
для группы Ли G в единице является алгебра Ли g этой
группы Ли (единица группы — единичная матрица — это
одна из точек группового многообразия). Иначе говоря,
любая кривая A(ε) в группе Ли G (считаем, что A(0) = I)
представляется вблизи единицы в виде

A(ε) = I + εX + o(ε), (1.5)

где матрица X =
dA

dε ε = 0
принадлежит алгебре Ли.

Чтобы доказать это, возьмём две кривые A(ε), B(ε)
на многообразии G, проходящие через единицу, и соот-
ветствующие им касательные векторы X, Y. Тогда не
трудно видеть, что касательные векторы к трёх дру-
гим кривым M1(ε) = A(Cε), M2(ε) = A(ε)B(ε) и M3(ε) =
= A(

√
ε)B(

√
ε)A−1(

√
ε)B−1(

√
ε) имеют вид

dM1

dε ε = 0
= C X ,

dM2

dε ε = 0
= X + Y ,

dM3

dε ε = 0
= [X,Y] .
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Так как для любых X, Y ∈ g и любого вещественного чис-
ла C векторы C X, X + Y и [X,Y] тоже принадлежат g, то
касательное пространство g является алгеброй Ли.

Размерность группы Ли как размерность соответству-
ющего многообразия совпадает с размерностью её алгебры
Ли.

Опишем алгебры Ли некоторых групп.

1) Алгебра u(N). Унитарные матрицы, близкие к единич-
ной, должны удовлетворять соотношению

(I + εX + o(ε))
(
I + εX† + o(ε)

)
= I.

Отсюда получаем, что алгебра Ли u(N) — это алгебра всех
антиэрмитовых матриц

X† = −X . (1.6)

2) Алгебра su(N). Помимо унитарности, матрицы из груп-
пы SU (N), близкие к единичной, должны удовлетворять
свойству

det (I + εX + o(ε)) = 1.

Поскольку для малых ε верно, что

det(I + εX) = 1 + ε TrX + o(ε),

получаем условие
TrX = 0 . (1.7)

Таким образом, алгебра Ли su(N) — это алгебра всех бес-
следовых антиэрмитовых матриц.

3) Алгебра so(N) — это алгебра всех действительных анти-
симметричных матриц

XT = −X . (1.8)

Условие TrX = 0 в этом случае выполняется автоматиче-
ски.



Лекция 2

а. Электродинамика как калибровочная теория

Известно, что волновая функция ψ(x), используемая
для описания движения микрочастиц в квантовой механи-
ке, сама по себе физического смысла не имеет, в отличие
от квадрата её модуля |ψ|2 = ψ†ψ, который определяет плот-
ность вероятности обнаружения частицы в данном месте.

Квадрат модуля волновой функции не изменится, если
ψ(x) подвергнуть фазовому преобразованию

ψ(x) −→ e−ieθ(x)ψ(x),

ψ†(x) −→ eieθ(x)ψ†(x), (2.1)

где e — постоянная, отождествляемая с элементарным
электрическим зарядом, θ(x) — параметр преобразования.

Когда этот параметр θ(x) — постоянное число, говорят
о глобальной симметрии. Если же θ(x) представляет со-
бой функцию точек пространства-времени, речь идёт о ло-
кальной симметрии.

Волновая функция электрона ψ(x) представляет собой
решение уравнения Дирака

iγ k∂kψ−m ψ = 0, (2.2)

полученного с помощью вариационной процедуры из дей-
ствия

SДирака =
∫

d4xLДирака , LДирака = i ψ̄γ k∂kψ . (2.3)

Здесь γ k — гамма-матрицы Дирака, удовлетворяющие со-
отношениям

γ k γ m + γ m γ k = 2 gkm I. (2.4)



ЛЕКЦИЯ 2 15

(
γ 4

)2
= −I,

(
γ a)2

= +I, a = 1, 2, 3; (2.5)

ψ̄ = ψ† γ 4 — дираковский сопряжённый спинор, m — масса
электрона.

Уравнение (2.2) является инвариантным относительно
глобальных преобразований, в то время как под действием
локальных преобразований ( θ(x) =/ const) оно, очевидно,
меняет свой вид.

Можно показать, что уравнение восстанавливает свою
инвариантность, если вместо частной производной ∂kψ за-
писать её «удлинённую» версию:

∂kψ −→ D̂ kψ = ∂kψ + ieAkψ,

∂kψ̄ −→ D̂ kψ̄ = ∂kψ̄− ieAkψ̄, (2.6)

где Ak — дополнительное поле, которое при локальном фа-
зовом преобразовании должно меняться как

Ak
θ−→ A′

k = Ak + ∂kθ. (2.7)

Преобразования (2.1) и (2.7) называют калибровочными
преобразованиями, а поля Ak — калибровочными полями.

Свойства введённого калибровочного поля полностью
совпадают со свойствами вектор-потенциала электромаг-
нитного поля. Дополнительное слагаемое e γ kAkψ в полу-
чившемся уравнении

iγ kD̂ kψ−mψ = iγ k∂kψ− e γ kAkψ−mψ = 0

описывает взаимодействие поля электрона ψ с электромаг-
нитным полем Ak, причём с константой связи, равной эле-
ментарному заряду e.
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б. Тензор Максвелла

Для завершения построения локально инвариантного
лагранжиана следует найти «кинетическое» слагаемое для
поля Am, то есть калибровочно инвариантное выражение,
зависящее только от Am и его производных, но не от ψ.

Простейшим тензором, инвариантным относительно
калибровочных преобразований (2.7), является известный
из электродинамики тензор напряжённости электромаг-
нитного поля или тензор Максвелла

Fmn = ∂mAn − ∂nAm . (2.8)

Очевидно, что Fmn является антисимметричным относи-
тельно перестановки своих индексов: Fmk = −Fkm. Легко
проверить также, что он удовлетворяет тождеству, назы-
ваемому тождеством Бьянки,

∂mFik + ∂iFkm + ∂kFmi = 0, (2.9)

или, в иной записи,

∂m

∗
Fmk = 0, (2.10)

где
∗
F ik = 1

2 εikmnFmn — тензор, дуальный к тензору Fik.

в. Уравнения Максвелла

Построенный с помощью тензора Максвелла скаляр

Lэ/м =
1
4

FkmFkm (2.11)

представляет собой лагранжиан электромагнитного поля.
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Таким образом, модель взаимодействия поля электро-
на с электромагнитным полем описывается с помощью ла-
гранжиана

Lполн = i ψ̄γ kD̂ kψ−mψ̄ψ + Lэ/м =

= i ψ̄γ k∂kψ−mψ̄ψ− eAkψ̄γ kψ +
1
4

FkmFkm. (2.12)

Варьируя его по компонентам поля ψ и используя принцип
наименьшего действия, получаем

iγ kD̂ kψ−mψ = 0, −iD̂ kψ̄γ k −mψ̄ = 0. (2.13)

Производя ту же операцию относительно потенциалов ка-
либровочных полей Ak, приходим к уравнениям Максвел-
ла:

δLполн = i ψ̄ γ k δ(D̂ kψ) +
1
2

δFkmFkm =

= −eψ̄γ kψ · δAk + ∂m(δAk)Fmk =

= −eψ̄γ kψ · δAk + ∂m
(
AkFmk)− ∂mFmk · δAk =

= −
(
∂mFmk + eψ̄γ kψ

)
δAk + 4-дивергенция

⇓
∂mFmk = −I k, I k = e ψ̄γ kψ . (2.14)

Это уравнение называется уравнением Максвелла с источ-
ником, в то время как его упрощённая версия

∂mFmk = 0 (2.15)

— уравнением Максвелла без источников.
Ещё один простейший скаляр, составленный из компо-

нент тензора Максвелла L̃ = Fkm

∗
Fkm, представляет собой

полную 4-дивергенцию

Fkm

∗
Fkm = 2 ∂k(Am

∗
F km)
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и дополнительного вклада в уравнения поля вносить не
будет.

г. Выбор калибровки

Калибровочная инвариантность уравнений Максвел-
ла приводит к тому, что их общее решение содер-
жит произвольную скалярную функцию пространственно-
временных координат xk. Это свойство неоднозначности
решения неудобно в более сложных случаях, когда имеют-
ся источники. Поэтому часто накладывают дополнитель-
ное условие на поле Ak так, чтобы этот произвол умень-
шить, или, как говорят, фиксируют калибровку. Часто ис-
пользуют следующие калибровочные условия:

1. Кулоновская калибровка

div ~A≡ ∂A1

∂x1
+

∂A2

∂x2
+

∂A3

∂x3
= 0. (2.16)

Это условие, так же как и все другие, не инвари-
антно относительно калибровочных преобразований:
если Ak(x) удовлетворяет этому условию, то A′

k(x) =
= Ak(x) + ∂kθ(x) тоже удовлетворяет ему, только если
∆θ = 0.

2. Калибровка Лоренца

∂kAk = 0. (2.17)

В отличие от кулоновского условия, это условие ин-
вариантно относительно остаточных калибровочных
преобразований A′

k(x) = Ak(x) + ∂kθ(x), где θ(x) удовле-
творяет уравнению Даламбера �θ ≡ ∂k∂kθ = 0.

3. Калибровка A0 = 0. Остаточная калибровочная инва-
риантность описывается калибровочными функция-
ми θ(x), не зависящими от времени, ∂4θ = 0.
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д. Тензор энергии-импульса электромагнитного поля

Найдём теперь выражение для тензора энергии-
импульса Tik электромагнитного поля. Для этого возьмём
уравнения Максвелла без источников

∂mFmk = 0

и свернём обе его части с Fpk. Воспользуемся теперь свой-
ствами тензора Максвелла и тождеством Бьянки (2.9):

0 = ∂mFmkFpk = ∂m
(
FmkFpk

)
− Fmk ∂mFpk =

= ∂m
(
FmkFpk

)
− 1

2
Fmk ∂pFmk = ∂m

(
FmkFpk

)
− 1

4
∂p

(
FmkFmk

)
=

= ∂i

[
F ikFpk −

1
4

δ i
p FmkFmk

]
. (2.18)

Так как для компонент искомого тензора должен выпол-
няться закон сохранения в дифференциальной форме

∂iTi
p = 0 ,

всегда можно выбрать Ti
p пропорциональным выражению,

стоящему в квадратных скобках равенства (2.18). Отсюда,
принимая в качестве коэффициента пропорциональности
единицу, получаем, что тензор энергии-импульса электро-
магнитного поля имеет вид

Tik = FimFk
m
· −

1
4

gik Fmp Fmp . (2.19)

Компоненты найденного нами тензора обладают следу-
ющими свойствами:

1. как уже отмечалось выше, ∂iTi
p = 0 для любого реше-

ния уравнений Максвелла;
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2. след тензора энергии-импульса тождественно равен
нулю, Ti

i = 0;

3. компонента T44, описывающая плотность энергии
электромагнитного поля, всегда больше или равна
нулю

T44 = F4mF4
m
· +

1
4

FmpFmp =
1
2

F4aF4
a
· +

1
4

FabFab =

=
1
2

(
(F14)

2 + (F24)
2 + . . . + (F23)

2
)

> 0 ,

причём знак равенства достигается только в случае
Fmn = 0.



Лекция 3

а. Обобщение на произвольную группу преобразований

Простую конструкцию из прошлого раздела, которая
приводит к электродинамике Максвелла, можно обобщить
от случая инвариантности по отношению к локальным фа-
зовым преобразованиям, на случай инвариантности отно-
сительно любой непрерывной группы симметрий (группы
Ли) G.

Рассмотрим вместо одного фермионного поля мульти-
плет из N полей

ψ =

 ψ1(x)
· · ·

ψN (x)

 , (3.1)

который при произвольных преобразованиях из группы
Ли G изменяется по следующему закону:

ψ U−→ ψ′ = U−1ψ. (3.2)

Здесь U — элемент матричного представления группы G
(в дальнейшем, для простоты, будем говорить, что U ∈ G)
является невырожденной квадратной матрицей N-го по-
рядка. Соответствующий мультиплет сопряжённых полей

ψ̄ =
(

ψ̄1(x), . . . , ψ̄N (x)
)

(3.3)

преобразуется как

ψ̄ U−→ ψ̄′ = ψ̄ U. (3.4)

Важно отличать это абстрактное преобразование от,
скажем, вращений в обычном трёхмерном пространстве.
Так, в своей первой работе Янг и Миллс описывали при
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помощи ψ дублет протон-нейтрон, и его преобразованиям
соответствовали вращения в изотопическом пространстве.

Если элементы матрицы U не зависят от точки прост-
ранства-времени, лагранжиан фермионных полей

Lферм = i ψ̄γ k∂kψ

инвариантен относительно таких преобразований.
Замечание: Компоненты столбца ψ являются четырёх-

рядными спинорами. Поэтому, строго говоря, матрицы U
и γ k имеют размер 4N × 4N :

U =


u11 I4 . . . u1N I4

u21 I4 . . . u2N I4

. . . . . . . . .
uN1 I4 . . . uNN I4

 , γ k =


γ k 0 . . . 0
0 γ k . . . 0

. . .
0 0 . . . γ k

 .

Из данного развёрнутого представления легко видеть, что
их произведение коммутативно

Uγ k =


u11 γ k . . . u1N γ k

u21 γ k . . . u2N γ k

. . . . . . . . .
uN1 γ k . . . uNN γ k

 = γ kU .

Когда же мы будем рассматривать локальные преоб-
разования U(x), инвариантность лагранжиана Lферм нару-
шится. Симметрия лагранжиана восстанавливается, если
обычную частную производную ∂k заменить, по аналогии
с предыдущим разделом, «удлинённой» или калибровоч-
ной производной D̂ k:

∂kψ −→ D̂ kψ = ∂kψ + Akψ, (3.5)
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где Ak — дополнительное поле, которое при локальном
преобразовании должно меняться как

Ak
U−→ A′

k = U−1AkU + U−1∂kU. (3.6)

Это можно проверить, непосредственно вычислив закон
преобразования калибровочной производной D̂ kψ:

D̂ kψ U−→ D̂ kψ′ = ∂k
(
U−1ψ

)
+

(
U−1AkU + U−1∂kU

)
U−1ψ =

= U−1∂kψ + ∂kU
−1ψ + U−1Akψ + U−1∂kU ·U−1ψ =

= U−1D̂ kψ +
(
∂kU

−1 + U−1∂kUU−1
)

ψ = U−1D̂ kψ.

Откуда

Lферм = i ψ̄γ kD̂ kψ U−→ L′
ферм = i ψ̄Uγ kU−1D̂ kψ =

= i ψ̄γ kUU−1D̂ kψ = Lферм.

Преобразования (3.2), (3.4) и (3.6) называют, по аналогии с
предыдущим разделом, калибровочными преобразования-
ми, а поля Ak — калибровочными полями.

б. Калибровочные поля как элементы алгебры Ли

Возникает вопрос о геометрической природе введённой
нами величины Ak. Для ответа на него рассмотрим локаль-
ное преобразование из группы Ли G, бесконечно мало от-
личающееся от тождественного преобразования

U(x) = I + εP(x) + o(ε), U−1(x) = I− εP(x) + o(ε), (3.7)

где матрица P(x) принадлежит матричному представле-
нию алгебры Ли g взятой нами группы преобразований G
(в дальнейшем, для краткости, будем говорить, что P ∈ g).
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Легко доказать, что U−1∂kU ∈ g:

U−1∂kU = (I− εP + o(ε)) · ∂k(I + εP + o(ε)) = ε ∂kP + o(ε).

Так как матрица ∂kP ∈ g, являясь, фактически, линей-
ной комбинация элементов алгебры Ли, то и U−1∂kU ∈ g.
Следовательно, для согласованности преобразования (3.6)
и само калибровочное поле Ak должно быть элементом ал-
гебры Ли g.

Рассмотрим теперь первое слагаемое в преобразова-
нии (3.6):

U−1AkU = (I− εP + o(ε)) ·Ak · (I + εP + o(ε)) =

= Ak + ε (AkP−PAk) + o(ε) = Ak + ε [AkP] + o(ε).

Здесь квадратными скобками обозначен коммутатор двух
элементов алгебры Ли. Из приведённого выражения оче-
видно, что U−1AkU ∈ g.

в. Тензор напряжённости калибровочного поля

Из потенциалов Ak можно сконструировать тензор на-
пряжённости калибровочного поля, аналогичный тензору
Максвелла в электродинамике

Fkm = ∂kAm − ∂mAk + [Ak,Am] . (3.8)

Как и Ak, величины Fkm принимают значения в алгебре
Ли g. Под действием произвольного калибровочного пре-
образования U компоненты тензора напряжённости пре-
образуются как

Fkm
U−→ F′

km = U−1FkmU . (3.9)
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Докажем это:

F′
km = ∂kA

′
m − ∂mA′

k + [A′
k,A

′
m] =

= ∂kU
−1AmU + U−1∂kAmU + U−1Am∂kU +

+ ∂kU
−1∂mU + U−1∂kmU + U−1AkAmU + U−1Ak∂mU +

+ U−1∂kUU−1AmU + U−1∂kUU−1∂mU− (k ↔ m) =

= U−1∂kAmU + U−1Am∂kU + U−1∂k∂mU +

+ U−1AkAmU + U−1Ak∂mU− (k ↔ m) =

= U−1
(
∂kAm − ∂mAk + [Ak,Am]

)
U = U−1FkmU .

Если тензор напряжённости тождественно равен нулю,
то говорят, что поле Am представляет собой чистую ка-
либровку. Компоненты потенциала такого поля с помощью
соответствующего калибровочного преобразования можно
всегда обратить в нуль. В общем же случае, потенциал по-
ля, являющегося чистой калибровкой, имеет вид

Am = U−1∂mU . (3.10)

г. Инвариантная форма на алгебре Ли

Для завершения построения локально инвариантного
лагранжиана следует найти калибровочно инвариантное
выражение, зависящее только от компонент поля Am и их
производных, но не от ψ.

Для этой цели естественно использовать обобщение ла-
гранжиана электромагнитного поля, записанного ранее.
Однако простейший вариант — комбинация FkmFkm — для
этого не подходит. Во-первых, она является матрицей, и,
во-вторых, не обладает калибровочной инвариантностью.
Обе указанные трудности можно обойти, если использо-
вать выражение вида G

(
Fkm,Fkm

)
, где G — симметричная
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невырожденная билинейная форма, определённая на ал-
гебре Ли g. Потребуем, чтобы данная форма была калиб-
ровочно инвариантной, то есть при любых X,Y ∈ g, U ∈ G
удовлетворяла тождеству

G(X,Y) = G
(
U−1XU,U−1YU

)
. (3.11)

Для преобразования из группы Ли G, бесконечно мало от-
личающегося от тождественного преобразования, имеем

G(X,Y) = G
(
U−1XU,U−1YU

)
=

= G
(
(I− εP + o(ε))·X·(I + εP), (I− εP + o(ε))·Y·(I + εP)

)
=

= G(X,Y) + εG([X,P],Y) + εG(X, [Y,P]) + o(ε) . (3.12)

Отсюда получаем, что для любых X,Y,P ∈ g справедливо
тождество

G([X,P],Y) + G(X, [Y,P]) = 0 . (3.13)

Очевидно, что любая форма, имеющая вид

G(X,Y) = λ Tr (XY) , (3.14)

где Tr обозначает след матрицы, а λ — некоторый числовой
множитель, является билинейной и симметричной. Более
того, благодаря свойствам следа, она удовлетворяет усло-
вию калибровочной инвариантности (3.11)

G
(
U−1XU,U−1YU

)
= λ Tr

(
U−1XUU−1YU

)
=

= λ Tr
(
U−1XYU

)
= λ Tr

(
XYUU−1

)
=

= λ Tr (XY) = G(X,Y) .

К сожалению, далеко не для всех алгебр Ли и соответ-
ствующих им групп Ли форма G, определяемая формулой
(3.14), является невырожденной.
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Ситуация сильно улучшается, если рассматриваемая
алгебра Ли g является простой. В этом случае невырож-
денная калибровочно инвариантная форма G существу-
ет, причём все возможные формы пропорциональны друг
другу. Исходя из этого, мы можем использовать самый
простой её вариант (3.14), а коэффициент пропорциональ-
ности выбрать позднее из соображений удобства.



Лекция 4

а. Разложение по базису алгебры Ли

Компоненты калибровочного поля Ak и тензора напря-
жённости Fkm, введённых нами в предыдущей лекции, как
элементы алгебры Ли g можно разложить по базису этой
алгебры {t(a)}

Ak = gA(a)
k t(a), Fkm = gF (a)

km t(a), a = 1, . . . ,dim g, (4.1)

где A(a)
k и F (a)

km — вещественные функции точек
пространства-времени, связанные соотношением

F (a)
km = ∂kA(a)

m − ∂mA(a)
k + g f (a)

·(b)(c)A
(b)
k A(c)

m , (4.2)

g — введённая из физических соображений константа свя-
зи, f (a)

·(b)(c) — вещественные структурные постоянные алгеб-
ры Ли g [

t(a), t(b)

]
= f (c)

·(a)(b)t(c) .

Базисные элементы t(a) обычно называют генераторами
группы Ли G, а индексы в круглых скобках — групповыми
индексами.

Компоненты матрицы введённой ранее билинейной
формы G(X,Y), определяемые стандартным образом как

G(a)(b) = G
(
t(a), t(b)

)
, G(b)(a) = G(a)(b) , (4.3)

могут быть использованы в качестве компонент метри-
ки, с помощью которой осуществляется опускание группо-
вых индексов. Поднятие групповых индексов производит-
ся, соответственно, при помощи обратной величины G(a)(b),
такой что

G(a)(c)G(b)(c) = δ (b)
(a).
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В ряде случаев использование объектов со всеми опу-
щенными (или поднятыми) групповыми индексами явля-
ется более удобным. Так из тождества (3.13) получаем сле-
дующее следствие:

G
(
t(a), [t(b), t(c)]

)
+ G

(
[t(a), t(c)], t(b)

)
= 0

⇓
G(a)(d)f

(d)
·(b)(c) + G(b)(d)f

(d)
·(a)(c) = 0

⇓
f(a)(b)(c) = −f(b)(a)(c). (4.4)

Это значит, что f(a)(b)(c) ≡ G(a)(d)f
(d)
·(b)(c) обладает свойством ан-

тисимметричности по любой паре своих индексов.

б. Калибровочная производная

Помимо калибровочной производной D̂ k от поля ψ

D̂ kψ = ∂kψ + Akψ = ∂kψ + gA(a)
k t(a)ψ (4.5)

можно определить похожую операцию по отношению к
тензору напряжённости калибровочного поля

D̂ mFik ≡ ∂mFik + [Am,Fik] , (4.6)

или, используя групповые индексы, D̂ mFik = g D̂ mF (a)
ik t(a),

где
D̂ mF (a)

ik = ∂mF (a)
ik + g f (a)

·(b)(c)A
(b)
m F (c)

ik . (4.7)

Рассмотрим свойства величины D̂ mFik. Во-первых, бла-
годаря определению (4.6), калибровочная производная
тензора напряжённости под действием калибровочных
преобразований преобразуется также как и тензор напря-
жённости Fik

D̂ mFik
U−→

(
D̂ mFik

)′
= U−1D̂ mFikU . (4.8)
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Во-вторых, для неё выполняется аналог тождества Бьянки

D̂ mFik + D̂ iFkm + D̂ kFmi = 0, (4.9)

или, используя более краткие обозначения,

D̂ m

∗
Fmk = 0 , (4.10)

где
∗
Fik = 1

2 εikmnF
mn — тензор, дуальный к тензору напря-

жённости калибровочного поля.
Формула (4.7) допускает естественное обобщение на

случай двух или большего числа групповых индексов,
верхних или нижних:

D̂ mX(a)···
···(d) ≡ ∂mX(a)···

···(d) + g f (a)
·(b)(c)A

(b)
m X(c)···

···(d) − . . .

− g f (c)
·(b)(d)A

(b)
m X(a)···

···(c) + . . . . (4.11)

Как можно видеть, метрика G(a)(b) в этом случае удовлетво-
ряет тождеству

D̂ mG(a)(b) = 0 , (4.12)

Это означает, что оператор D̂ m, в известном смысле, яв-
ляется ковариантной производной. Кроме этого, исполь-
зуя определение (4.11), можно показать, что для введён-
ная нами калибровочная производная подчиняется прави-
лу Лейбница:

D̂ m
(
X(a)Y (b)

)
= X(a)D̂ mY (b) + D̂ mX(a) Y (b). (4.13)

Коммутатор операторов D̂ m в простейшем случае, когда
имеется только один групповой индекс, равен

[D̂ k, D̂ m]X(a) ≡
(
D̂ kD̂ m − D̂ mD̂ k

)
X(a) = g f (a)

·(b)(c)F
(b)
km X(c) . (4.14)
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в. Уравнения Янга–Миллса

По аналогии с электродинамикой, модель взаимодей-
ствия мультиплета фермионных полей с калибровочным
полем описывается с помощью лагранжиана

Lполн = i ψ̄γ kD̂ kψ−mψ̄ψ + Lкал. поля =

= i ψ̄γ k∂kψ−mψ̄ψ + ψ̄ Ak γ kψ + Lкал. поля =

= i ψ̄γ k∂kψ−mψ̄ψ + gA(a)
k ψ̄ t(a) γ kψ + Lкал. поля. (4.15)

Определим лагранжиан калибровочного поля как

Lкал. поля =
1

4g 2
G

(
Fmn,Fmn) =

1
4
G(a)(b)F (a)

mn F (b)mn . (4.16)

Благодаря определению формы G, данное выражение яв-
ляется, очевидно, калибровочно-инвариантным:

L′
кал. поля =

1
4g 2

G
(
F′

mn,F
′mn) =

1
4g 2

G
(
U−1FmnU,U−1FmnU

)
=

=
1

4g 2
G

(
Fmn,Fmn) = Lкал. поля .

Вариация его относительно компонент калибровочного по-
ля имеет вид

δLкал. поля =
1

2g 2
G

(
δFmn,Fmn) =

=
1
g 2
G

(
∂mδAn + [Am, δAn],Fmn) =

=
1
g 2

∂m
{
G

(
δAn,Fmn)}− 1

g 2
G

(
δAn, ∂mFmn + [Am,Fmn]

)
=

=
1
g 2

∂m
{
G

(
δAn,Fmn)}− 1

g 2
G

(
δAn, D̂ mFmn) . (4.17)



32 ЛЕКЦИЯ 4

Первое слагаемое представляет собой полную 4-диверген-
цию, следовательно, в уравнения поля оно вклада давать
не будет.

Перепишем выражение для вариации, используя груп-
повые индексы ( δAn = g δA(a)

n t(a)):

δLкал. поля = −δA(a)
n D̂ mFmn

(a) + 4-дивергенция. (4.18)

Отсюда легко получить, что уравнения динамики ка-
либровочного поля должны иметь вид (срав. с (2.14))

D̂ mFmk
(a) = −I k

(a), I k
(a) = −g ψ̄ t(a) γ kψ . (4.19)

Это уравнение называется уравнением Янга-Миллса с ис-
точником, в то время как его упрощённая версия

D̂ mFmk
(a) = 0 ⇔ D̂ mFmk = 0 (4.20)

— уравнением Янга-Миллса без источников или просто
уравнением Янга-Миллса.

г. Тензор энергии-импульса калибровочного поля

Найдём теперь тензор энергии-импульса Tik ка-
либровочного поля. Для этого рассмотрим выражение
G
(
D̂ mFmk,Fpk

)
, равное нулю на решениях уравнения (4.20).

Воспользовавшись свойствами (4.12), (4.13) и тождеством
Бьянки (4.9), получим

0 = G
(
D̂ mFmk,Fpk

)
= ∂mG

(
Fmk,Fpk

)
− G

(
Fmk, D̂ mFpk

)
=

= ∂mG
(
Fmk,Fpk

)
− 1

2
G
(
Fmk, D̂ pFmk

)
=

= ∂mG
(
Fmk,Fpk

)
− 1

4
∂p G

(
Fmk,Fmk

)
=

⇓

0 = ∂i

[
G
(
Fik,Fpk

)
− 1

4
δ i

p G
(
Fmk,Fmk

)]
. (4.21)
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Поскольку для компонент искомого тензора должен вы-
полняться закон сохранения в дифференциальной форме

∂iTi
p = 0 ,

всегда можно выбрать Ti
p пропорциональным выражению,

стоящему в квадратных скобках равенства (4.21). Отсюда,
принимая в качестве коэффициента пропорциональности
величину 1/g 2, получаем

Tik =
1
g 2
G
(
Fim,Fk

m
·
)
− 1

4g 2
gik G

(
Fmp,Fmp) . (4.22)

Наибольший интерес для нас будет представлять выра-
жение для плотности энергии калибровочного поля:

T44 =
1
g 2
G
(
F4m,F4

m
·
)

+
1

4g 2
G
(
Fmp,Fmp) =

=
1

2g 2
G
(
F4a,F4

a
·
)

+
1

4g 2
G
(
Fab,Fab) =

=
1

2g 2

(
G(F14,F14) + G(F24,F24) + . . . + G(F23,F23)

)
. (4.23)

Если форма G является положительно определённой, то
для полей, не являющихся чистой калибровкой, плотность
энергии всегда положительна T44 > 0.

д. Простейшие калибровочные группы

Важно отметить, что обычная электродинамика Макс-
велла может быть получена из рассмотренной схемы, если
в качестве группы калибровочных преобразований G взять
одномерную абелеву группу Ли U (1).

Кроме того, важнейшую роль в различных приложени-
ях играют неабелевы группы SU (N), элементами которых
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являются унитарные матрицы с определителем, равным
единице

U†U = I, detU = 1 ,

и соответствующие им алгебры Ли su(N). Размерность та-
кой алгебры может быть вычислена при помощи простой
формулы

dim su(N) = N2 − 1 .

Так, например, dim su(2) = 3, dim su(3) = 8, dim su(4) = 15 и
так далее.

Группа SU (2) в этом ряду является простейшей неабе-
левой калибровочной группой. Её генераторами (базисом в
соответствующей алгебре Ли su(2)) можно считать набор
антиэрмитовых матриц t(a) = 1

2i τ(a), где a = 1, 2, 3, τ(a) —
матрицы Паули:

τ(1) =

(
0 1
1 0

)
, τ(2) =

(
0 −i
i 0

)
, τ(3) =

(
1 0
0 −1

)
. (4.24)

Для такого выбора базиса метрика G(a)(b) и структур-
ные постоянные f(a)(b)(c) принимают простой вид (множи-
тель в определении метрики выбирается из соображения
удобства)

G(a)(b) = −2 · Tr
(
t(a)t(b)

)
= δ (a)(b) , f(a)(b)(c) = ε(a)(b)(c) . (4.25)

При этом любую матрицу U ∈ SU (2) можно представить
двумя способами: в виде экспоненты U = exp(t(a)θ(a)), где
θ(a) — произвольные параметры, либо как линейную ком-
бинацию единичной матрицы и генераторов группы Ли

U = V 4I+2V (a)t(a), (V 4)2+(V (1))2+(V (2))2+(V (3))2 = 1 . (4.26)

Следующей по сложности является группа SU (3). Её
генераторами являются антиэрмитовы матрицы t(a) =
= 1

2i λ(a), где индекс (a) принимает значения от 1 до 8, а



ЛЕКЦИЯ 4 35

сами матрицы λ(a), называемые матрицами Гелл-Манна,
имеют вид

λ(1) =

 0 1 0
1 0 0
0 0 0

, λ(2) =

 0 −i 0
i 0 0
0 0 0

, λ(3) =

 1 0 0
0 −1 0
0 0 0

,

λ(4) =

 0 0 1
0 0 0
1 0 0

, λ(5) =

 0 0 −i
0 0 0
i 0 0

, λ(6) =

 0 0 0
0 0 1
0 1 0

,

λ(7) =

 0 0 0
0 0 −i
0 i 0

, λ(8) =
1√
3

 1 0 0
0 1 0
0 0 −2

. (4.27)

Для такого выбора базиса метрика G(a)(b), так же как и в
случае алгебры su(2), равна символу Кронекера

G(a)(b) = −2 · Tr
(
t(a)t(b)

)
= δ (a)(b) . (4.28)

При этом естественно, что структурные постоянные f(a)(b)(c)

для алгебры su(3) уже не имеют такой простой вид, как в
предыдущем случае, поэтому все возможные их значения
мы здесь приводить не будем.

е. Параллельные калибровочные поля

Калибровочное поле, потенциал которого можно запи-
сать как

Am = am X, A(a)
m = am X(a) , (4.29)

где величина X(a) не зависит от координат, называется па-
раллельным. Тензор напряжённости и его калибровочная
производная для такого поля имеют вид

Fkm = fkm X , F (a)
km = fkm X(a) , fkm = ∂kam − ∂mak ,

D̂ kF (a)
mp = ∂kfmp X(a) . (4.30)
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Отметим, что выражение (4.29) для потенциала калиб-
ровочного поля не является калибровочно инвариантным.
Если потенциал с помощью калибровочных преобразова-
ний может быть приведён к виду (4.29), то такие калибро-
вочные поля мы будем называть эффективно абелевыми.

Очевидным свойством параллельных калибровочных
полей является то, что уравнение Янга-Миллса в этом
случае редуцируется к уравнению Максвелла, так как все
коммутаторы, входящие в уравнения, равны нулю. Сле-
довательно, любое решение уравнений Максвелла путём
умножения на независящий от координат элемент из соот-
ветствующей алгебры Ли X ∈ g превращается в решение
уравнений Янга-Миллса.

Получение же решений, не являющихся эффективно
абелевыми, сопряжено со значительными трудностями. Во
второй части настоящего конспекта мы рассмотрим мето-
ды построения простейших неабелевых решений — ин-
стантонов и монополей.
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